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A B S T R A C T   

While the languages of the world differ in many respects, they share certain commonalties, which can provide 
insight on our shared cognition. Here, we explore the learnability consequences of one of the striking com-
monalities between languages. Across languages, word frequencies follow a Zipfian distribution, showing a 
power law relation between a word's frequency and its rank. While their source in language has been studied 
extensively, less work has explored the learnability consequences of such distributions for language learners. We 
propose that the greater predictability of words in this distribution (relative to less skewed distributions) can 
facilitate word segmentation, a crucial aspect of early language acquisition. To explore this, we quantify word 
predictability using unigram entropy, assess it across languages using naturalistic corpora of child-directed 
speech and then ask whether similar unigram predictability facilitates word segmentation in the lab. We find 
similar unigram entropy in child-directed speech across 15 languages. We then use an auditory word segmen-
tation task to show that the unigram predictability levels found in natural language are uniquely facilitative for 
word segmentation for both children and adults. These findings illustrate the facilitative impact of skewed input 
distributions on learning and raise questions about the possible role of cognitive pressures in the prevalence of 
Zipfian distributions in language.   

1. Introduction 

One of the striking commonalities between languages is the way 
word frequencies are distributed. Across languages, the frequency of 
words follows a Zipfian distribution, showing a power law relation be-
tween a word's frequency and its rank (Piantadosi, 2014; Zipf, 1949; see 
Eq. (1)). Intuitively, this reflects the fact that languages have relatively 
few high frequency words and many low frequency ones, and that the 
decrease in frequency is not linear (the most frequent word is twice as 
frequent as the second most frequent word and so on). First noted by Zipf 
in the 1930's (Zipf, 1949), Zipfian, or near-Zipfian (Piantadosi, 2014) 
distributions are repeatedly found across languages, and for different 
parts of speech (including nouns, verbs and adjectives). Eq. (1), which is 
an extension of Zipf's law formulated by Mandelbrot (Mandelbrot, 
1953), shows the relation between a word's frequency - f(r) and its rank – 
r. Two constants determine the shape of the distribution: α sets the 
steepness of the curve, and β introduces a skew which enables a better fit 
to natural language (Piantadosi, 2014; see also discussion in Dębowski, 
2006). Frequency and rank show a power-law relation when looking at 
raw frequencies and a linear relation in log space. 

f (r)∝
1

(r + β)α (1) 

There are many different explanations for the origin of Zipfian dis-
tributions in language, with ongoing controversy about the significance 
of this law and whether it tells us something fundamental about lan-
guage. On the one hand, such distributions are found across the physical 
world, where they are thought to reflect general mathematical princi-
ples not unique to language (e.g., scale-invariance, Chater & Brown, 
1999). However, their recurrence in language - a human creation - may 
nevertheless reflect foundational properties of human cognition and 
communication. While there is no agreed account of their source, their 
presence has been argued to be a form of optimal coding (Ferrer-i- 
Cancho, Bentz, & Seguin, 2020), to create an optimal trade-off between 
speaker and listener effort (Ferrer i Cancho & Sole, 2003), and to 
facilitate the hierarchical organization of word meanings (Manin, 2008). 
Zipfian distributions have also been proposed to reflect a trade-off be-
tween learnability pressures on the one hand and expressivity pressures 
on the other: Having a lot of words is needed for speakers to be able to 
communicate clearly and fully, yet acquiring many words is challenging 
from the learners' perspective. The particular shape of the Zipfian 
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distribution – with its' graded frequency - may offer a balance between 
those two pressures (Bentz, Alikaniotis, Cysouw, & Ferrer-i-Cancho, 
2017; Coupé, Oh, Dediu, & Pellegrino, 2019; Lavi-Rotbain & Arnon, 
2019a, 2019b). 

Interestingly, less work has examined Zipfian distributions from a 
learnability perspective to ask whether they indeed impact language 
learning. Regardless of their source, their presence and propensity in 
language may have advantages for learning: In particular, words are 
more predictable in Zipfian distributions than in less skewed distribu-
tions. This increased word predictability could provide a facilitative 
environment for learning by making it easier to predict upcoming ele-
ments and easier to learn high frequency elements and use them as 
stepping stones for subsequent learning (as was suggested previously in 
Kurumada, Meylan, & Frank, 2013). Despite their more limited vocab-
ulary, word frequencies in speech directed to infants and young children 
(child-directed speech) also follow a Zipfian distribution (Lavi-Rotbain 
& Arnon, under review; Hendrickson & Perfors, 2019), as do the objects 
(Clerkin, Hart, Rehg, Yu, & Smith, 2017), and object combinations that 
infants see (Lavi-Rotbain & Arnon, 2021). That is, from early on, both 
the words children hear and the objects they see are skewed in a certain 
way. Such skewed distributions may be particularly helpful for seg-
menting words, a crucial and challenging first step in breaking into 
language. Since words are not clearly separated in spoken language, 
infants need to discover their boundaries. Their ability to do so has been 
studied extensively, revealing infants' ability to use sophisticated 
distributional information to learn higher order structure (Bortfeld, 
Morgan, Golinkoff, & Rathbun, 2005; Saffran, Aslin, & Newport, 1996). 
Skewed distributions could make this task easier by making word 
transitions easier to predict and allowing high frequency words to serve 
as anchors for segmenting less frequent ones, as seen in infants' use of 
their own name to segment adjacent words (Bortfeld et al., 2005). 

Even though children's linguistic environment is skewed, this natural 
skew is rarely reflected in lab-based investigations (but see Kurumada 
et al., 2013; Meylan, Kurumada, Börschinger, Johnson, & Frank, 2012 
for exceptions, also discussed below). Word segmentation in the lab is 
usually studied using artificial language learning paradigms (Saffran 
et al., 1996). Almost all such investigations expose learners to uniform 
distributions, where all novel words appear equally often. Such uniform 
distributions are useful for isolating the impact of specific factors on 
learning, but they are less predictable than children's real-world 
learning environment. Only a handful of studies have asked whether 
exposure to skewed distributions facilitates language learning (Hen-
drickson & Perfors, 2019; Kurumada et al., 2013; Meylan et al., 2012; 
Schuler, Reeder, Newport, & Aslin, 2017), with somewhat mixed results. 
In the only study to compare word segmentation in a Zipfian and uni-
form distribution, words were segmented more accurately in the Zipfian 
condition when they appeared more often next to the most frequent 
word (contextual facilitation), but accuracy was not better overall 
compared to a uniform distribution (Kurumada et al., 2013). An addi-
tional study (Meylan et al., 2012) showed that word segmentation was 
improved when the dependencies between words were asymmetrical 
(when some words appeared more often with others, resulting in a 
skewed distribution of dependencies). However, learning was better 
overall when there were no dependencies between words at all (as in the 
standard use of artificial word segmentation tasks, and unlike natural 
language). This study also did not find an overall advantage for skewed 
distributions. A similar pattern was found in a category formation task: 
participants assigned words to categories with similar success rates after 
being exposed to a Zipfian or a uniform distributions (Schuler et al., 
2017). More facilitatory effects were found using a cross-situational 
word learning paradigm (Hendrickson & Perfors, 2019): Participants 
showed better learning of frequency-matched items in a Zipfian distri-
bution compared to a uniform one, but only when there was ambiguity 
(when each object was presented simultaneously with two labels). A 
recent study showed better visual statistical learning - learning which 
triplet images appear together - when the triplets were presented in a 

Zipfian distribution compared to a uniform, suggesting that learning 
relations between elements improves in a skewed distribution (Lavi- 
Rotbain & Arnon, 2021). 

The few studies that have examined learning from Zipfian distribu-
tions suggest they are beneficial for learning, but the extent and gen-
erality of this effect is unclear. More importantly, we do not know what 
about Zipfian distributions impacts learning: which properties of the 
distribution facilitate learning? Here, we propose and test the hypothesis 
that Zipfian distributions are facilitative because of their greater word 
predictability. We predict that different languages will have similarly 
predictable word distributions and that these predictability values will 
enhance learners' word segmentation. We test these predictions using a 
combination of corpus-based and experimental studies where the corpus 
data serves both to assess the similarity between languages, and to 
generate predictions for the experimental investigation. Specifically, we 
first quantify word predictability in child-directed speech across 15 
different languages from eight language families using unigram entropy 
(Study 1) and then test the impact of those values on learning using a 
classic artificial word segmentation paradigm (Studies 2–3). We start 
from the corpora investigation for two reasons: (1) to test whether 
languages have similar unigram predictability; and (2) to use the values 
we find to create experimental conditions for testing their impact on 
learning using artificial languages. 

We find that different languages have similar unigram predictability, 
and that these predictability levels are uniquely facilitative for word 
segmentation. Comparing three levels of unigram predictability, we find 
that word segmentation accuracy is higher in languages that are as 
predictable as natural language, compared to uniform distributions, but 
also compared to skewed distributions less predictable than those found 
in natural language (Study 2). That is, increasing unigram predictability 
to a level lower than that of natural language did not facilitate learning, 
even though predictability was increased relative to a uniform distri-
bution. We then show that the facilitation at language-like predictabil-
ity, and the lack of facilitation for a less skewed distribution, is found for 
two additional skewed distributions that have similar unigram predict-
ability but a different distribution shape (binary vs. Zipfian, Study 3). 
These findings highlight the importance of unigram predictability for 
learning and suggest that increasing unigram predictability does not 
impact learning in a linear fashion: It is not the case that any increase in 
predictability leads to an increase in accuracy. More generally, the 
findings deepen our understanding of the distributional factors 
impacting language acquisition, and offer a theoretical account for why 
(and when) Zipfian distributions facilitate learning. In the discussion, we 
relate these findings to broader question of how (and when) individual 
learning biases can impact language structure (e.g., Kirby, Cornish, & 
Smith, 2008). 

2. Study 1: word distributions have similar unigram 
predictability across languages in child-directed speech 

In this study, we examine the unigram predictability of word dis-
tributions in child-directed speech across different languages. Recent 
work suggests that words carry a similar amount of information across 
languages (Bentz et al., 2017; Takahira, Tanaka-Ishii, & Dȩbowski, 
2016). A corpus study of 1000 languages using parallel corpora found 
that unigram entropy was similar across different languages (Bentz 
et al., 2017). Taken from information theory, Shannon's entropy 
(Shannon, 1948) quantifies the information content of a random vari-
able (the amount of uncertainty) and has been shown to impact a range 
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of linguistic phenomena (Gibson et al., 2019). Unigram entropy refers to 
the average amount of information carried by all the words in the 
sample (where a word is defined by its orthographic form). Bentz et al. 
found that the average amount of information carried by individual 
words is similar across different languages: It is as easy to guess which 
word will appear next out of the entire lexicon.1 This finding is consis-
tent with our prediction that languages have similar unigram predict-
ability, but needs to be expanded in several ways. First, since the study 
used parallel corpora (translations of the same text), the similarity be-
tween languages could have been driven in part by the identical content 
conveyed. Second, most of the data comes from written, rather than 
spoken language, and may not reflect the information theoretic prop-
erties of day-to-day spoken interaction. Finally, and most importantly 
from our perspective, the study only analyzed adult speech, which dif-
fers in many respects from child-directed speech, and may not give us an 
accurate picture of children's learning environment. To address these 
limitations, we conduct an investigation of word distributions in child- 
directed speech across 15 languages. 

Rather than only computing unigram entropy, we operationalize the 
greater predictability of words in Zipfian distributions using the 
information-theoretic notion of efficiency (Eq. (2)), which is calculated 
using unigram entropy. Efficiency is the ratio between the observed 
entropy and the maximal entropy, which is entropy under a uniform 
distribution (see Eq. (2)). This measure has been used in the past to study 
human cognition (Pryluk, Kfir, Gelbard-Sagiv, Fried, & Paz, 2019) and is 
useful for us since it normalizes entropy by set size (see explanation 
below). In our use, efficiency is the ratio between the observed unigram 
entropy and unigram entropy under a uniform distribution with the 
same set size. Efficiency moves in the same direction as entropy: Given 
the same set size, lower entropy (a more predictable distribution) leads 
to lower efficiency. Efficiency has a range between zero (minimal effi-
ciency, achieved when entropy is zero and the input is completely pre-
dictable), and one (maximal efficiency, achieved when the input has 
maximal entropy and is least predictable, as in the uniform 
distribution).2 

Efficiency = η(X) = observed entropy
maximal entropy

= −

∑N

i=1
p(xi)*log2(p(xi) )

log2N
(2) 

Efficiency is impacted by the parameters of the Zipfian distribution 
(as described in Eq. (1)): An increase in α leads to a more skewed dis-
tribution, which will have lower unigram entropy and consequently 
lower efficiency. Zipfian distributions can differ from one another in 
their α, and as a result, can also differ in their observed unigram entropy 
and efficiency (see Appendix 2 for a simulation illustrating the relation 
between changes in α and efficiency, under a Zipfian distribution). 

Using efficiency (instead of only unigram entropy) allows us to 
normalize entropy by set size and compare distribution predictability 

across different experimental paradigms, and across languages whose 
lexicon size may differ and for which we have differently sized samples 
(as is the case for child-directed speech). 

2.1. Methods 

We used all the languages in the CHILDES database (MacWhinney, 
2000) that had corpora for typically developing monolingual children 
with at least 150,000 tokens. We set this restriction following recent 
estimates of unigram entropy across languages and varying corpora sizes 
that showed that entropy calculations are reliable and stable when the 
corpus used includes at least 50,000 tokens (Bentz et al., 2017). This left 
us with the following languages: English (British and North-American), 
German, French, Japanese, Dutch, Polish, Spanish, Swedish, Portuguese, 
Hebrew, Mandarin, Estonian, Danish, Catalan and Norwegian, con-
taining over 110 child-parent dyads. For each language, we collapsed 
over the different dyads to create one large corpus. We counted the 
number of appearances of each word (defined by orthographic form, as 
is done in prior studies of Zipfian distributions, e.g., (Piantadosi, 2014)) 
and calculated the unigram entropy for the observed frequency distri-
bution. This is the observed unigram entropy. We then calculated the 
maximal unigram entropy, which is the unigram entropy under a uni-
form distribution for the same number of types (e.g., if the corpus had 
1000 distinct word forms, we assumed each appeared the same number 
of times). The last step was to calculate efficiency for each corpus: the 
ratio between the observed unigram entropy and the maximal unigram 
entropy (see Eq. (1)). 

To further explore the stability of the efficiency values, we divided 
the larger corpora (French, Japanese, German, North-American English 
and British English) into smaller samples of about 500,000 tokens each. 
The division procedure for each language was as follows: Each tran-
scription file was read from beginning to end until a database of at least 
500,000 tokens was created. This created samples that were conversa-
tionally continuous which is important for two reasons: (1) to better 
mimic the conversational continuity that is a property of actual lin-
guistic input; (2) to avoid entropy inflation that could happen by mixing 
unrelated conversations: mixing words from different conversations 
could increase the number of distinct word types (e.g., by mixing words 
from a conversation around the dinner table with words from bath time), 
leading to an increased number of types which would lead to increased 
unigram entropy. For each sample, we counted the number of appear-
ances of each word (defined by its orthographic form). We then calcu-
lated the efficiency of each sample in the same way described above. 

2.2. Results 

Even though the corpora varied both in overall size (number of to-
kens) and in the size of the lexicon (number of types), efficiency values 
spanned a relatively narrow range (see Table 1): all values were between 
0.59 and 0.7 (average 0.64, SD = 0.03, Table 1). To ensure that the 
relatively stable deviation from the uniform we found is not dependent 
on the particular measure we used (efficiency), we also calculated the 
difference between the observed word distribution and a uniform one 
using Kullback–Leibler divergence (DKL) - a more commonly used 
measure for estimating the distance between two distributions. We 
found similar results: DKL values were similar across languages and 
spanned a relatively narrow range, meaning the distributions had a 
similar distance from the uniform distribution (mean DKL = 5.05, SD =
0.70; for details see Appendix 1 and Supplementary Table 1). To further 
probe the stability of these efficiency values, we repeated the calcula-
tion, but this time divided each of the five larger corpora (American 
English, British English, German, French and Japanese) into bins con-
taining 500,000 words (see the Methods section). The efficiency values 
for the smaller bins (n = 36) were still in the same range: the average 
efficiency value was 0.67 (SD = 0.01), with a range of 0.65–0.69 
(Table 2). Interestingly, these values are lower than those of the Zipfian 

1 Unigram entropy does not take linguistic context into account: It doesn't 
quantify the predictability of a word given the preceding linguistic context, 
even though context is clearly predictive in natural language (e.g., Bell et al., 
2003). This is a simplifying assumption, also made in prior corpus-based in-
vestigations of Zipfian distributions. We discuss its limitations in the discussion.  

2 Efficiency is an established mathematical term that is complementary to the 
mathematical term of redundancy (calculated as: 1 – efficiency). While effi-
ciency measures the amount of “space” that is used in order to transmit a 
certain amount of information, redundancy measures the amount of “space” not 
used. We opted to use the term efficiency rather than redundancy for several 
reasons. First, it has the same direction as entropy – meaning that lower effi-
ciency corresponds to greater predictability (the relation is the opposite with 
redundancy) – making it easier to understand the relation between the two. 
Second, the concept of redundancy is discussed within the study of language 
universals and language complexity, where it is used in many formulations and 
with no agreed upon mathematical or conceptual definition (see Tal, 2020 for a 
review and discussion). 
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distribution used in Kurumada et al., 2013 (mean = 0.84, SD = 0.03, 
range: 0.867–0.808, measures were calculated according to the word 
frequencies provided in Fig. 2 on page 443 of their article), raising the 
possibility that those languages were not learned better because they 

were not as predictable as natural language. 
However, how can we tell if the range of efficiency values we found is 

a narrow one? If efficiency values are limited to the range we found - if 
efficiency for Zipfian distributions cannot be higher than 0.7 or lower 

Table 1 
Summary of corpora measures across languages.  

Language No. 
Corpora 

No. Tokens No. 
Types 

Word frequency (per 
million) 

Observed entropy 
[bits] 

Maximal entropy [bits] Efficiency 

British English 12 7,066,980 30,470 1–333,802 (0.14–47,234) 8.83 14.9 0.59 
North American 

English 
34 6,404,744 34,593 1–294,493 (0.16–45,980) 8.99 15.08 0.6 

German 7 2,177,584 37,236 1–71,561 (0.46–32,862) 9.16 15.18 0.60 
French 8 1,938,055 21,776 1–75,134 (0.52–38,767) 8.86 14.41 0.61 
Japanese 6 1,503,673 36,031 1–71,580 (0.67–47,603) 9.45 15.14 0.62 
Dutch 5 1,149,781 19,870 1–45,815 (0.87–39,846) 8.67 14.28 0.61 
Polish 8 794,232 44,555 1–32,172 (1.26–40,509) 10.35 15.44 0.67 
Spanish 12 608,277 15,485 1–22,652 (1.64–37,239) 8.97 13.92 0.64 
Swedish 2 376,879 10,035 1–19,259 (2.65–51,101) 8.4 13.29 0.63 
Portuguese 2 352,661 8611 1–23,828 (2.84–67,566) 8.23 13.07 0.63 
Hebrew 6 306,765 14,095 1–16,372 (3.26–53,369) 9.37 13.78 0.68 
Mandarin 2 216,715 8853 1–9217 (4.61–42,530) 8.66 13.11 0.66 
Estonian 5 216,504 12,072 1–12,224 (4.62–56,460) 9.5 13.56 0.70 
Danish 1 194,765 4924 1–10,741 (5.13–55,148) 7.71 12.27 0.63 
Catalan 4 189,844 7970 1–12,318 (5.27–64,884) 8.71 12.96 0.67 
Norwegian 2 184,676 8342 1–9196 (5.41–49,795) 8.75 13.03 0.67 
Summary Mean = 8.91 (SD =

0.6) 
Mean = 13.96 (SD =
0.98) 

Mean = 0.64 (SD =
0.033)  

Table 2 
Corpora details and efficiency measures for samples ≈500,000 tokens.  

Language No. sample No. tokens No. types Observed entropy [bits] Maximal entropy [bits] Efficiency 

French 1 501,179 10,541 8.64 13.36 0.647 
2 502,135 10,915 8.77 13.41 0.65 
3 503,063 11,718 8.86 13.52 0.66 
Mean across samples 502,126 11,058 8.76 13.43 0.65 

Japanese 1 502,147 19,085 9.27 14.22 0.65 
2 500,015 17,302 9.22 14.08 0.65 
3 500,260 16,543 9.22 14.01 0.66 
Mean across samples 500,807 17,643 9.24 14.10 0.65 (SD = 0.002) 

German 1 501,663 14,709 8.83 13.37 0.66 
2 502,827 15,216 8.78 13.41 0.65 
3 502,260 15,322 8.83 13.42 0.66 
4 502,532 13,247 8.8 13.22 0.67 
Mean across samples 502,321 14,624 8.81 13.355 0.66 (SD = 0.005) 

North American English 1 501,354 7082 8.67 12.79 0.68 
2 500,356 10,862 9.16 13.41 0.68 
3 500,910 9492 8.8 13.21 0.67 
4 500,338 7041 8.53 12.78 0.67 
5 500,258 8367 8.78 13.03 0.67 
6 500,398 9318 8.79 13.19 0.67 
7 511,638 9081 8.66 13.15 0.66 
8 500,653 10,230 8.94 13.32 0.67 
9 500,172 9315 8.81 13.19 0.67 
10 500,137 10,712 8.82 13.39 0.66 
11 505,194 8254 8.67 13.01 0.66 
12 501,693 9179 9.08 13.16 0.69 
Mean across samples 501,925 9078 8.81 13.14 0.67 (SD = 0.01) 

British English 1 500,318 12,659 8.84 13.63 0.65 
2 502,646 7181 8.64 12.81 0.67 
3 501,751 6894 8.75 12.75 0.69 
4 501,688 7927 8.81 12.95 0.68 
5 503,121 8794 8.84 13.10 0.68 
6 500,141 9973 8.87 13.28 0.67 
7 502,413 7205 8.56 12.81 0.67 
8 500,536 6771 8.44 12.73 0.66 
9 501,870 8022 8.51 12.97 0.66 
10 503,255 7352 8.62 12.84 0.67 
11 501,043 6677 8.49 12.70 0.67 
12 501,263 6892 8.51 12.75 0.67 
13 500,976 6450 8.37 12.66 0.66 
14 503,049 6345 8.37 12.63 0.66 
Mean across samples 501,719 7796 8.61 12.90 0.67 (SD = 0.01) 

Summary Mean across all languages and samples 501,882 9219 8.84 (SD = 0.23) 13.3 (SD = 0.4) 0.67 (SD = 0.01)  
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than 0.6 - then it would not be surprising to repeatedly find those values 
in the corpora. To test this, and to see how efficiency changes as a 
function of alpha and lexicon size (assuming a Zipfian distribution), we 
ran a simulation calculating efficiency for artificial lexicons of different 
sizes and varying α values, assuming a fixed corpus size of three million 
tokens (by artificial lexicon we mean that we generated a list of variables 
differing in frequency according to Eq. (1)). We looked at artificial 
lexicons with sizes of 30,000, 50,000 and 70,000 types (to reflect esti-
mates of lexicon size in speakers, (Brysbaert, Stevens, Mandera, & 
Keuleers, 2016)), and at alpha values between zero and five (in in-
crements of 0.1). For each lexicon size and each alpha value, we assigned 
frequency to the words according to the Zipfian equation (Eq. (1), under 
a corpus of three, five and seven million tokens respectively). That is, the 
lexicons were simply a list of frequencies, generated according to the 
Zipfian distribution with a limitation on lexicon size and total number of 
tokens. We then calculated the efficiency of all the resulting distribu-
tions. Efficiency values spanned the full possible range between zero to 
one for all lexicon sizes. More importantly, the efficiency values we 
found in natural language lie within the steepest part of the possible 
efficiency distribution, suggesting that their recurrence is not trivial: 
Randomly sampling from the distribution of efficiency values would not 
have given us a concentration of values between 0.6 and 0.7 (see Ap-
pendix 2 for full details). 

The corpus investigation suggests that languages indeed have similar 
unigram predictability and provides us with a range of efficiency values 
whose impact on learning we can test experimentally: We can now ask 
whether exposure to distributions with the same efficiency values we 
found in natural language will facilitate word segmentation in the lab. 

3. Study 2: language-like efficiency facilitates word 
segmentation in children and adults 

Having found that languages have similar efficiency values, we can 
ask whether those values facilitate word segmentation. We ask three 
questions: (1) Is word segmentation improved in more predictable dis-
tributions? (2) Is the facilitation greater at the predictability values 
found in natural language? And (3) is the effect found in both children 
and adults? The child sample serves as a replication and extension: given 
that children and adults do not always show the same learning biases, 
we want to see whether they will be similarly affected by distribution 
predictability (see more detailed discussion below). 

We examine the impact of efficiency on learners' ability to segment a 
four-word unsegmented artificial language using a classic artificial word 
segmentation paradigm (Saffran et al., 1996). In this paradigm, learners 
are exposed to recurrent tri-syllabic ‘words’ where the only cue to word 
boundary is that the transitional probabilities between syllables are 
higher within words than across word boundaries. While used exten-
sively, almost all existing studies expose learners to uniform distribu-
tions, where each word appears equally often (but see Kurumada et al., 
2013; Meylan et al., 2012 for exceptions). We manipulated efficiency by 
varying the frequency of the four words to create a skewed distribution 
where one word appears more often than the other three (we call this a 
binary distribution). We start with this distribution (which differs from 
the Zipfian one found in language, see Study 3), because it allows us to 
examine the impact of efficiency without having to control for frequency 
effects (since all low frequency words are equally frequent). 

We compared performance at three efficiency levels (presented here 
in order from highest to lowest), based on what we found in natural 
language: (1) Maximal efficiency: a uniform distribution where each of 
the four words appear equally often, as is the norm in this paradigm 
(efficiency = 1). This is the least predictable distribution. (2) Reduced 
efficiency: a skewed distribution more predictable than the uniform, but 
less predictable than natural language. The efficiency of this distribution 
(0.85) is lower than that of the uniform, but higher than that of natural 
language providing an intermediate value between the two. Impor-
tantly, the efficiency of this distribution is similar to that of the skewed 

distribution used in Kurumada et al., (2013), allowing us to ask whether 
the lack of facilitation was driven by having a distribution not predict-
able enough; and (3) Language-like efficiency: a skewed distribution with 
efficiency values similar to those we found in natural language in Study 
1, (see Table 3 for full details). The efficiency of this distribution (0.54) 
is lower than the other two, making it the most predictable distribution 
of the three, and the one we predict to facilitate learning the most. By 
comparing performance across the three conditions, we can ask whether 
any increase in unigram predictability leads to improved learning, or 
whether accuracy will be improved more (or only) in language-like ef-
ficiency. If any increase in predictability improves learning, then per-
formance should be improved in the two skewed conditions compared to 
the uniform one. If, alternatively, learning is uniquely facilitated at 
certain efficiency levels, then performance should be better in the 
language-like condition compared to the other two. 

We used the same conditions and procedure with adults (Study 2a) 
and children (Study 2b) to see whether a similar effect is found in 
younger learners. The child sample included children aged 9–12 years 
and serves as a replication in another population of learners, and as an 
extension. We predict that children at this age will behave similarly to 
adults but this is not a trivial prediction since they still often perform 
worse than adults in artificial language learning studies (Arciuli & 
Simpson, 2012; Raviv & Arnon, 2018), and do not always show the same 
learning biases as adults (Jennifer Culbertson & Schuler, 2019; Lavi- 
Rotbain & Arnon, 2017). Given this literature, we wanted to ask whether 
the effect of efficiency will be similar, as we expect if it reflects a 
fundamental aspect of the linguistic environment. Moreover, the 
collection of child data provides an extension and comparison to recent 
work showing that children's visual SL improves in a skewed distribution 
(Lavi-Rotbain & Arnon, 2021). The visual study only compared a uni-
form to a skewed distribution and did not examine the impact of effi-
ciency. By collecting a child sample of similar ages, we can compare the 
impact of skew in the visual and auditory domains. 

3.1. Method 

3.1.1. Participants 
All studies were approved by the IRB committee at the relevant 

university. 
Adult participants: 142 participants took part in study 2a (mean age 

24;0; 108 females, 34 males). All were undergraduate students. All 
participants were native Hebrew speakers without learning or language 
disabilities. Adults read and signed a consent form prior to participating. 
They received 10 NIS or course credit in return for their participation. 

Child participants: 147 children took part in Study 2b (age range: from 
9;0 to 12;0 years, mean age: 10;1 years; 68 girls, 79 boys). Children's 
ages did not differ across conditions (F(3) = 1.69, p > 0.1). All children 
were visitors at the Bloomfield Science Museum in Jerusalem and were 
recruited for this study as part of their visit to the Living Lab. Parental 
consent was obtained for all children. All children were native Hebrew 
speakers without learning disabilities or attention deficits. Children 
received a small prize in return for their participation. 

3.2. Materials 

3.2.1. Auditory stimuli 
Participants were exposed to one of the familiarization streams ac-

cording to the experimental condition they were assigned to. All streams 
consisted of the same four tri-syllabic words: “dukame”, “nalubi”, 
“kibeto”, and “genodi”. We used only four words because we wanted to 
compare child and adult performance on a language that will be learn-
able for both. The 12 unique syllables were taken from Glicksohn & 
Cohen (Glicksohn & Cohen, 2013). They were created using the PRAAT 
synthesizer (Boersma & van Heuven, 2001) and were matched on pitch 
(~76 Hz), volume (~60 dB), and duration (250–350 ms). The four 
words were created by concatenating the syllables using MATLAB to 
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ensure that there were no co-articulation cues to word boundary. The 
words were matched for length (mean word length = 860 ms, range =
845-888 ms). The words were then concatenated together using MAT-
LAB in a randomized order to create the auditory familiarization 
streams, with the only constraint being that words could not repeat 
themselves in the uniform condition (to keep the transitional probabil-
ities between words constant). Importantly, there were no breaks be-
tween words or syllables and no prosodic or co-articulation cues in the 
stream to indicate word boundaries. 

3.2.2. Experimental conditions 
We used the same four words to create all our experimental condi-

tions (see Table 3 for full details). The two skewed conditions and the 
uniform condition had the same exposure length. For the two skewed 
conditions, we created four different exposure streams where the 
frequent word was different (to ensure that the effect of efficiency is not 
driven by one particular word being easier to learn). This did not impact 
the results (see supplementary information of Study 2 and 3) so we 
collapsed over the four exposure streams in the analyses. 

3.2.3. Procedure 
Children and adults wore noise-cancelling headphones while sitting 

in front of a computer. All participants were told they are going to listen 
to an alien language and that they need to pay attention and try to learn 
it as best as they can. The instructions were identical in all conditions. 
During exposure, a check-board image was displayed on the screen. 
After the familiarization phase, participants performed a segmentation 
test. On each trial, they heard two words and were asked to decide which 
belonged to the language they heard. They were told to guess if they 
were not sure. Each of the four words appeared once with each of the 
four foils to create 16 two-alternative-forced-choice trials. The trials 
appeared in a semi-randomized order, with the constraint that the same 
word/foil did not appear in two consecutive trials. The order of words 
and foils was counter-balanced so that in half the trials, the real word 
appeared first and in the other half, the foil appeared first. Our foils were 
non-words created by combining three syllables from three different 
words while maintaining their position (“dunobi”, “nabedi”, “kilume”, 

and “gekato”, average length: 860 ms; range 854-868 ms). Non-words, 
as opposed to part-words, never appeared together during exposure, 
making it easier to distinguish between them and real words. We used 
the “easier” non-words (rather than part words) to ensure that children 
will be able to complete the task, and because we did not set out to show 
that learners can discriminate words from part-words (a finding shown 
extensively), but to see how efficiency affects this ability. 

3.3. Results 

3.3.1. Study 2a: adults 
Participants were randomly allocated to one of the four conditions 

(Nuniform = 31; Nreduced = 41; Nlanguage-like = 40; Nshorter-uniform = 30). 
Participants showed learning (were above chance, which was 50%) in 
all conditions (language-like efficiency: t(39) = 12.57, p < 0.001; 
reduced efficiency: t(40) = 7.0, p < 0.001; uniform: t(30) = 7.0, p <
0.001; shorter-uniform: t(29) = 5.8, p < 0.001). As predicted, word 
segmentation was better in language-like efficiency compared both to 
the uniform and the reduced-efficiency conditions (Mlanguage-like =

81.66%, SD = 15.9%; Mreduced = 67.5%, SD = 15.9%; Muniform = 65.7%, 
SD = 12.5%, Fig. 1A). 

Language-like efficiency led to better segmentation compared to a uniform 
distribution, while reduced efficiency did not. To test the effect of efficiency 
on segmentation accuracy, we compared the three conditions using a 
mixed-effect linear regression model (Model 1). Our dependent bino-
minal variable was success on a single trial of the segmentation test. Our 
fixed effects were: experimental condition (dummy coded, meaning that 
reduced efficiency and language-like efficiency were compared to the 
uniform condition); log word frequency (centered); trial number 
(centered); and order of appearance in the test (word-first trials vs. foil- 
first trials). The model had random intercepts for participants and for 
items (see Supplementary Table 2). To examine the overall effect of 
experimental condition and word frequency, we used model 
comparisons. 

Experimental condition had a significant effect on performance (chi 
(2) = 36.09, p < 0.001 in model comparisons): Participants showed 
better learning in language-like efficiency compared to the uniform 

Table 3 
Study 2 experimental conditions.  

Condition Length 
[min] 

Total no. 
tokens 

Frequency distribution of the four words Unigram entropy 
[bits] 

Efficiency Average no. appearances after the frequent 
word (% of total appearances) 

Shorter-uniform 1:05 76 

19 19 19 19
0

50

100
2 1 – 

Uniform 1:50 128 

32 32 32 32

0

50

100
2 1 – 

Reduced 
efficiency 

1:50 128 

71

19 19 19
0

50

100
1.7 0.85 13 (68.4%) 

Language-like 
efficiency 

1:50 128 
101

9 9 9
0

50

100
1.1 0.54 8 (88.9%)  
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distribution (β = 1.27, SE = 0.23, p < 0.001). Despite being more pre-
dictable, performance in the reduced efficiency condition did not differ 
from the uniform condition (β = 0.19, SE = 0.20, p > 0.1). Frequency 
also had a significant effect on segmentation, with higher accuracy for 
more frequent words (β = 0.41, SE = 0.1, p < 0.001, chi(1) = 19.26, p <
0.001). The effect of trial number was significant, with worse accuracy 
over time (possibly reflecting the repetition of both foils and words, β =
− 0.04, SE = 0.01, p < 0.001). Accuracy was higher when the real word 
was presented first (β = 0.61, SE = 0.11, p < 0.001), as has been found in 
other studies using the same paradigm (Lavi-Rotbain & Arnon, 2017; 
Raviv & Arnon, 2018; Shufaniya & Arnon, 2018). 

Language-like efficiency leads to better segmentation compared to 
reduced efficiency. To directly examine the difference between the two 
skewed conditions, we compared them using an additional model 
(Model 2). We used a mixed-effect linear regression model with success 
on a single trial of the segmentation test as our dependent binominal 
variable. Our fixed effects were: experimental condition (language-like 
efficiency vs. reduced efficiency); log word frequency (centered); the 
interaction between word frequency and condition; trial number 
(centered); and order of appearance in the test (word-first trials vs. foil- 
first trials). The model had random intercepts for participants and for 
items. The model shows that language-like efficiency resulted in better 
performance than reduced-efficiency (β = 1.11, SE = 0.23, p < 0.001, 
Fig. 1C, Supplementary Table 3). 

To further support the difference between the language-like and the 
uniform condition, and the lack of difference between the uniform and 
the reduced efficiency, we conducted Bayes factor analyses. A Bayes 

factor analysis on the mixed-effect model comparing the uniform and 
reduced conditions found strong support for the null hypothesis pre-
dicting no difference between them (BayesFactor = 18.28, details in 
Supplementary). In contrast, a similar analysis comparing the language- 
like and the uniform conditions found very strong support for the pre-
diction that they differ in accuracy (BayesFactor = 9643). That is, ac-
curacy was improved only in the language-like condition. This 
facilitation could not have been driven only by an anchoring effect - 
where the frequent word is learned early on and used to segment the 
lower frequency words (Kurumada et al., 2013), since the reduced ef-
ficiency condition also provided anchoring (the low frequency words 
appeared next to the frequent word often between 63 and 78% of the 
time, a proportion similar to that found in Kurumada et al. (2013), and 
much more than the uniform, see Table 3), but did not improve accu-
racy. Despite providing more anchoring opportunities than the uniform 
distribution (which provided no anchoring since all words were equally 
frequent), accuracy was not higher in the reduced-efficiency condition. 

Language-like efficiency leads to better segmentation of low frequency 
words. To test the prediction that the facilitation is not driven only by the 
frequent word and that low-frequency words are also learned better 
under language-like efficiency, we compared accuracy of low frequency 
words across three efficiency levels. We used a mixed-effect linear 
regression model (Model 3) with success on a single trial of the seg-
mentation test as our dependent binominal variable. We included all 
trials from the shorter-uniform condition (16 trials) and only the low 
frequency trials from the reduced and language-like efficiency condi-
tions (12 trials per condition). Our fixed effects were: experimental 

Fig. 1. Adult segmentation scores from Study 2a. (A) Accuracy across conditions. (B) Accuracy only for the lower frequency words. (C) Comparing low frequency 
words and high frequency words in the two skewed conditions. Dashed lines represent chance level. Boxes indicate quartiles. Points represents individual. Numbers 
indicate frequency during exposure and percentages indicate mean segmentation score. 
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condition (dummy coded, shorter-uniform as baseline); trial number 
(centered); and order of appearance in the test (word-first trials vs. foil- 
first trials). The model had random intercepts for participants and for 
items. Importantly, this model shows that the increased accuracy in the 
language-like condition was not driven only by performance on the 
higher frequency word: Accuracy on the low frequency words was better 
in language-like efficiency compared to the shorter-uniform condition 
(Mlanguage-like-infrequent = 78.8% vs. Mshorter-uniform = 65.0%), despite the 
words appearing half the number of times (9 vs. 19 times, β = 0.78, SE =
0.22, p < 0.001). There was no such facilitation in the reduced efficiency 
condition (Mreduced-infrequent = 64.8%), even though each low frequency 
word appeared more often than in the language-like condition (19 times, 
as in the uniform-short condition, β = − 0.001, SE = 0.21, p = 0.99, see 
Fig. 1B, Supplementary Table 4). A Bayes factor analysis showed support 
for the null hypothesis (BayesFactor = 33.7). The opposite pattern was 
found when comparing the language-like and the uniform-short condi-
tions (support for the alternative hypothesis, BayesFactor = 705.34). 

To summarize, adults showed better segmentation in the language- 
like efficiency condition compared to the uniform and to the reduced 
efficiency conditions, even for the low frequency words. 

3.3.2. Study 2b: children 
Children completed the same four conditions (Nuniform = 30; Nreduced 

= 47; Nlanguage-like = 40; Nshorter-uniform = 30). Children showed learning 
(were above chance) in language-like efficiency: t(39) = 6.12, p < 0.001; 
reduced efficiency: t(46) = 3.97, p < 0.001; and the uniform condition: t 
(29) = 4.84, p < 0.001. Performance in the shorter-uniform condition 
was not significantly higher than chance (t(29) = 1.82, p = 0.08). Like 
adults, children showed better learning in language-like efficiency: They 

were more accurate in this condition compared to the reduced efficiency 
and the uniform conditions (Mlanguage-like = 66.1%, SD = 16.6%; Munif-

orm = 60.2%, SD = 11.5%; Mreduced = 58.0%, SD = 13.8%; Fig. 2A). 
Language-like efficiency leads to better segmentation compared to a 

uniform distribution, while reduced efficiency does not. To test the effect of 
efficiency on segmentation accuracy, we compared the three conditions 
using a mixed-effect linear regression model (Model 4). Our dependent 
binominal variable was success on a single trial of the segmentation test. 
Our fixed effects were: experimental condition (dummy coded, meaning 
that reduced efficiency and language-like efficiency were compared to 
the uniform condition); age (centered); log frequency of the word 
(centered); trial number (centered); and order of appearance in the test 
(word-first trials vs. foil-first trials). The model had random intercepts 
for participants and for items (see Supplementary Table 6 for full 
model). To examine the overall effect of experimental condition, word 
frequency and age, we used model comparisons. Experimental condition 
had a significant effect on performance (chi(2) = 16.02, p < 0.001): 
Children showed better learning in language-like efficiency compared to 
the uniform condition (β = 0.53, SE = 0.17, p < 0.01). Performance in 
the reduced efficiency condition did not differ from the uniform con-
dition (β = − 0.03, SE = 0.15, p > 0.8). A Bayes factor analysis showed 
strong support for the null hypothesis (no difference in accuracy be-
tween the reduced and the uniform conditions, BayesFactor = 28.44). 
Frequency impacted segmentation (chi(1) = 35.76, p < 0.001): Children 
showed higher accuracy for more frequent words (β = 0.45, SE = 0.08, p 
< 0.001). In addition, age had a significant effect on performance (chi 
(1) = 6.89, p < 0.001): older children showed higher accuracy (β = 0.16, 
SE = 0.06, p < 0.05), as has been found in previous studies (Raviv & 
Arnon, 2018). 

Fig. 2. Children's segmentation scores from Study 2b. (A) Accuracy across conditions. (B) Accuracy on the lower frequency words. (C) Comparing low frequency 
words and high frequency words in the two skewed conditions. Dashed lines represent chance level. Boxes indicate quartiles. Points represents individual. Numbers 
indicate frequency during exposure and percentages indicate mean segmentation score. 
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Language-like efficiency leads to better segmentation compared to 
reduced efficiency. To see if there is a difference between the two skewed 
conditions, as we found for adults, we compared them using an addi-
tional model (Model 5). We used a mixed-effect linear regression model 
with success on a single trial of the segmentation test as our dependent 
binominal variable. Our fixed effects were: experimental condition 
(language-like efficiency compared to reduced efficiency); log word 
frequency (centered); the interaction between them; age (centered); trial 
number (centered); and order of appearance in the test (word-first trials 
vs. foil-first trials). The model had random intercepts for participants. 
This model showed that language-like efficiency led to significantly 
better performance than reduced efficiency (β = 0.44, SE = 0.16, p <
0.01, Fig. 2C, Supplementary Table 7). Together, these results suggest 
that the effect of unigram predictability on learning is not linear: it is not 
the case that any increase in predictability leads to an increase in ac-
curacy. Instead, it seems that a large enough reduction in efficiency is 
needed to facilitate learning. 

Language-like efficiency leads to better segmentation of low frequency 
words. Finally, we wanted to test if the facilitation at language-like ef-
ficiency is also seen when looking only at the low frequency words. 
Children did not manage to learn words appearing 19 times in the 
reduced efficiency condition (Mreduced-infrequent = 52.5%, SD = 16.0%; 
not higher than chance, t(46) = 1.06, p > 0.1), and learned them rela-
tively poorly in the uniform-short condition (Muniform-short = 54.17%, SD 
= 12.5%; t(29) = 1.8, p = 0.07). However, they did manage to learn 
words appearing half the number of times (only nine times) when pre-
sented in language-like efficiency (Mlanguage-like-infrequent = 62.5%, SD =
17.3%; t(39) = 4.57, p < 0.001 compared to chance). To test whether 
low frequency words were learned better in the language-like condition 
compared to the uniform-short, we used a mixed-effect linear regression 
model (Model 6). Our dependent binominal variable was success on a 
single trial of the segmentation test. We included all trials from the 
shorter-uniform condition (16 trials) and only low frequency trials from 
the language-like efficiency condition (12 trials). Our fixed effects were: 
experimental condition (dummy coded, shorter-uniform as baseline); 
trial number (centered); and order of appearance in the test (word-first 
trials vs. foil-first trials). The model had random intercepts for partici-
pants and for items. The model confirmed that segmentation was better 
in the language-like condition, despite the lower frequency (9 vs. 19 
times, β = 0.34, SE = 0.15, p < 0.05; Fig. 2B, Supplementary Table 8). 
That is, exposure to a skewed distribution with language-like efficiency 
facilitated children's segmentation and enabled them to learn low fre-
quency words that were not learned in a uniform distribution. 

To summarize, children showed a similar pattern as adults: seg-
mentation in the language-like condition was better than in the uniform 
condition or in the reduced condition, including for low-frequency 
words. 

3.3.3. Study 3: the relative impact of distribution shape and unigram 
predictability 

Study 2 showed that word segmentation is facilitated in children and 
adults at language-like efficiency. However, efficiency in Study 2 was 
reduced by making one word more frequent than the other three (binary 
distribution). This design allowed us to better control for the effect of 
word frequency (since all the low frequency words within each condi-
tion appeared an equal number of times), but was limited in using a 
distribution that does not resemble the Zipfian one found in natural 
language. In Study 3, we want to ask two additional questions: (1) Does 
the impact of efficiency on learning extend to a more language-like 
distribution? And (2) is the facilitation impacted more by distribution 
shape or unigram predictability? Since different distributions can have 
the same efficiency level the way to examine this is to compare distri-
butions that have the same shape (e.g., binary) but differ in efficiency. 
We use the same word segmentation paradigm to compare adults' per-
formance on two skewed distributions (binary vs. Zipfian) in two effi-
ciency levels (reduced vs. language-like). We predict similar 

performance in languages with similar efficiency levels: We expect 
better performance in the two language-like conditions, regardless of 
distribution shape. This study also serves to replicate the facilitative 
effect of language-like efficiency compared to reduced efficiency: We 
will sample three additional efficiency values to see if we again observe 
better performance in language-like efficiency compared to reduced- 
efficiency. 

In the binary conditions, one word was more frequent, while the 
other three had the same low frequency (as in Study 2). In the Zipfian 
conditions, word frequency followed a power law distribution (see Eq. 
(1), lower efficiency values were obtained by higher a higher exponent). 
We compared the following four conditions: (1) a binary condition with 
reduced efficiency (the same condition as in Study 2a, efficiency =0.85, 
2) a Zipfian condition with reduced efficiency (efficiency = 0.83, 3) a 
binary condition with language-like efficiency (efficiency = 0.65); and 
(4) a Zipfian condition with language-like efficiency (efficiency = 0.61, 
see Table 4 for full details). We used the existing sample from Study 2a 
for condition 1, but collected new data for the three other conditions. We 
collected a new sample for the binary-language-like condition (even 
though we had a similar condition in Study 2a) to ensure a similar dif-
ference in efficiency for the two skewed distributions (0.63 vs. 0.85 for 
the binary distribution and 0.61 vs. 0.83 for the Zipfian one), and to 
show that the facilitative effect of language-like efficiency is replicated 
in an additional sample. 

3.4. Method 

3.4.1. Participants 
Adult participants: 120 additional adult participants completed the 

three new conditions (for all four conditions: N = 161, mean age = 23;7; 
115 females). All were undergraduate students. All participants were 
native Hebrew speakers without learning or language disabilities. Adults 
read and signed a consent form prior to participating. They received 10 
NIS or course credit in return for their participation. 

3.4.2. Materials 
Auditory stimuli were identical to the ones used in Study 2. The 

experimental conditions were created in the same manner as the ones in 
Study 2. Full details on each condition are listed in Table 4. The pro-
cedure was identical to that of Study 2. 

3.5. Results 

Participants were randomly allocated to one of the three new con-
ditions (NZipfian-reduced = 40; Nbinary-language-like = 40; Nlanguage-like = 40; 
NZipfian-language-like = 40). Participants in all conditions showed learning 
(were above chance level of 50%): Zipfian-reduced: t(39) = 12.19, p <
0.001; binary-language-like: t(39) = 10.9, p < 0.001; Zipfian-language- 
like: t(39) = 11.15, p < 0.001. As predicted, accuracy was higher in 
language-like efficiency compared to the reduced efficiency conditions 
(Mlanguage-like-binary = 78.4%, SD = 16.5%; Mlanguage-like-Zipfian = 78.4%, 
SD = 16.1%; Mintermediate-Zipfian = 74.7%, SD = 12.8%; Mreduced-binary =

67.5%, SD = 15.9%). 
Since the most frequent word is expected to be learned well in all 

conditions (and may disproportionately impact overall accuracy), we 
focus on performance on the low frequency words. Fig. 3 shows seg-
mentation scores in all conditions for the most frequent word and the 
lower frequency words separately. As predicted, participants showed 
better learning of the low frequency words in the language-like condi-
tions compared to the reduced efficiency ones (Mlanguage-like-binary-infre-

quent = 77.1%, SD = 19.1%; Mlanguage-like-Zipfian-infrequent = 76.4%, SD =
18.9%; Mreduced-Zipfian-infrequent = 69.8%, SD = 16.5%; Mreduced-binary- 

infrequent = 64.8, SD = 17.9%). To test the significance of these effects, we 
used mixed-effects models. 

Segmentation is facilitated at language-like efficiency, but is not affected 
by distribution shape. In order to test the effect of efficiency versus 
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distribution shape, we compared all four conditions using the same 
model (Model 7). We used a mixed-effect linear regression model with 
success on a single trial of the segmentation test as our dependent 
binominal variable. Our fixed effects were: efficiency level (reduced 
versus language-like, reduced as baseline), distribution shape (binary 
versus Zipfian, binary as baseline), word frequency (binary coded: 
frequent trials versus infrequent ones, infrequent as baseline) as well as 
all the interaction between distribution shape and frequency; trial 
number (centered); and order of appearance in the test (word-first trials 
vs. foil-first trials). The model had random intercepts for item (See 
Supplementary Table 10 for full model). Efficiency had a significant 

effect on performance: Participants showed better learning in language- 
like efficiency compared to reduced efficiency (β = 0.62, SE = 0.15, p <
0.001). Distribution shape did not affect performance (β = 0.23, SE =
0.14, p = 0.1), suggesting that in this task, efficiency impacted learning 
more than shape. The interaction between frequency and distribution 
shape was significant (β = 0.79, SE = 0.35, p < 0.05), suggesting better 
learning of the frequent word in the Zipfian distribution. However, this 
effect was only found in the reduced efficiency conditions: In the 
reduced efficiency conditions, the frequent word was learned better in 
the Zipfian distribution than in the binary one (t(65.56) = 2.53, p <
0.05). No such difference was found when comparing the two language- 

Table 4 
Study 3 experimental conditions.   

Distribution 
type 

Frequency distribution of the four 
words 

Unigram entropy 
[bits] 

Efficiency Average no. appearances after the frequent word (% of 
total appearances) 

Reduced efficiency Binary* 

71

19 19 19
0

50

100
1.7 0.85 13 (68.4%) 

Zipfian 70
30 18 10

0

50

100
1.65 0.83 10.66 (55.1%) 

Language-like 
efficiency 

Binary 
92

12 12 12
0

50

100
1.3 0.65 9.66 (80.1%) 

Zipfian 
93

21 9 5
0

50

100
1.21 0.61 10.33 (88.5%) 

All conditions in Study 3 had length of 1:50 min and 128 tokens. 
* This is the same sample as in Study 3a. 

Fig. 3. Comparing adult segmentation scores on low frequency words and high frequency words across conditions (note that the sample for the binary-reduced 
efficiency is the one from Study 2a). Dashed lines represent chance level. Boxes indicate quartiles. Points represents individual. Numbers indicate frequency dur-
ing exposure (in the Zipfian conditions this is the average of the low frequency words) and percentages indicate mean segmentation score. 
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like conditions (t(77.6) = − 0.35, p > 0.7, as can be seen in Fig. 3), 
suggesting it is not a robust one. 

As in Study 2a, anchoring cannot explain the full pattern of results, 
and does not provide an alternative explanation to efficiency. Anchoring 
predicts that the low frequency words in the two Zipfian conditions 
(reduced efficiency vs. language-like) will be learned equally well since 
the most frequent word was learned very well in both conditions and the 
lower frequency words appeared next to it a similar number of times 
(10.66 times on average in the Zipfian-reduced and 10.33 in the Zipfian- 
language-like, Table 4). Despite this, the low frequency words were 
learned significantly worse in the reduced condition compared to the 
language-like one (69.8% versus 76.5%). To test the significance of this 
difference, we used a mixed-effect model comparing learning of the low 
frequency words between the two Zipfian conditions (Model 8). Our 
fixed effects were: efficiency level (reduced versus language-like, 
reduced as baseline); trial number (centered); and order of appearance 
in the test (word-first trials vs. foil-first trials). The model had random 
intercepts for item (Supplementary Table 11). The low frequency words 
were learned significantly worse in the reduced condition compared to 
the language-like one (β = 0.35, SE = 0.149 p < 0.05). This pattern is 
predicted by efficiency, but not anchoring. 

These results support the facilitative effect of language-like effi-
ciency on learning (for two additional efficiency values), and indicate 
that in this experimental paradigm, unigram predictability impacts 
word segmentation more than distribution shape. 

4. Discussion 

In the current paper, we set out to explore the possible learnability 
consequences of Zipfian distributions in language: While much work has 
debated their origin (Chater & Brown, 1999; Ferrer i Cancho & Sole, 
2003), less research has examined their impact on learning. Given their 
prevalence in language, do they provide a beneficial, or even optimal, 
environment for learners? Specifically, we ask whether the greater 
predictability of words in such distributions can facilitate word seg-
mentation – a critical first step in language acquisition. This prediction 
receives some support from previous studies showing that Zipfian dis-
tributions provide more contextual facilitation for word segmentation 
compared to uniform ones (Kurumada et al., 2013) and that they can 
improve learning in other linguistic and non-linguistic domains (Hen-
drickson & Perfors, 2019; Meylan et al., 2012; Lavi-Rotbain & Arnon, 
2020). However, previous work did not identify what about the distri-
bution facilitates learning and under what conditions. 

Here, we go beyond existing findings to provide a comprehensive 
theoretical account about when (and why) Zipfian distributions facili-
tate word segmentation. Specifically, we propose that segmentation is 
aided by the greater predictability of words in such distributions. We 
quantify distribution predictability using the information-theoretic 
measure of efficiency, which captures how predictable a distribution is 
relative to a uniform one and provides a way to normalize entropy by set 
size. In the first study, we show that unigram predictability has very 
similar values in child-directed speech across fifteen different languages. 
We then use the predictability values we found to create experimental 
conditions asking whether word segmentation in the lab is facilitated in 
distributions with similar efficiency. Studies 2 and 3 use a classic arti-
ficial word segmentation paradigm to test the impact of unigram pre-
dictability and shape on learning by shifting the distribution away from 
the uniform one used in most SL studies. In line with our predictions, we 
find that word segmentation is facilitated in language-like efficiency 
relative to a uniform distribution, and also relative to a skewed distri-
bution less predictable than language (with higher efficiency). This 
finding holds across two skewed distributions: a binary one where one 
word is more frequent than the other three and a Zipfian one where 
word frequency follows a power law distribution. Importantly, these 
findings cannot be explained by anchoring alone: while anchoring - 
where the frequent word is learned earlier and used to segment lower 

frequency ones - undoubtedly plays a role in word segmentation, and 
occurs more in more skewed distributions, it cannot explain the full 
range of results since the reduced efficiency condition also had high 
anchoring but did not improve segmentation. 

Our findings show that learners are sensitive to the overall predict-
ability of the linguistic environment, and that the effect on learning is 
not linear: Accuracy does not increase with any increase in unigram 
predictability. Fig. 4 shows accuracy from all experimental conditions 
ordered by efficiency. We can see that (a) performance improves 
(compared to the uniform) only in language-like efficiency, and (b) that 
this happens regardless of distribution shape: Accuracy was higher at 
language-like efficiency for a binary and Zipfian distribution, and was 
not improved at reduced-efficiency for both distribution shapes. That is, 
despite being more predictable than a uniform distribution, word seg-
mentation was not improved when efficiency values were higher than 
those found in natural languages. It seems that there is a minimal in-
crease in unigram predictability that has to happen before learning is 
facilitated: the distribution needs to be skewed enough. This effect has 
parallels in the animal learning literature where there are stronger 
neural responses to highly deviant (infrequent) stimuli (stimulus-spe-
cific adaptation, Taaseh, Yaron, & Nelken, 2011). While not identical, 
this literature highlights the benefit that low frequency items can receive 
in highly skewed distributional environments. The lack of improvement 
in the reduced efficiency conditions challenges a recent proposal sug-
gesting that Zipfian distributions are beneficial only in ambiguous 
learning environments. A recent study found better cross-situational 
learning from a Zipfian distribution, but only when the task contained 
ambiguity (Hendrickson & Perfors, 2019): Learning was not improved 
when each object was only presented with one label. The authors pro-
pose that the facilitation stems from using the frequent word to reduce 
ambiguity quickly, and predict it will not be found in unambiguous 
learning settings (i.e., when learning already segmented object-label 
associations). However, since all our conditions involved ambiguity 
(there are many possible ways to segment the novel speech stream), such 
an explanation cannot explain the lack of facilitation in the reduced 
efficiency conditions. While ambiguity may play an important factor in 
when skewed distribution are facilitative, it cannot explain the range of 
data explained by efficiency. 

The non-linear effect of increased unigram predictability on learning 
can also explain the lack of overall advantage when word segmentation 
was previously assessed in a Zipfian distribution that did not have 
language-like efficiency (Kurumada et al., 2013): in this previous study, 
the Zipfian distribution was not predictable enough, and consequently 
did not enhance learning. While there are several differences in the 
design of the two studies, they cannot explain away the effect of effi-
ciency we found. Kurumada et al. had larger vocabularies than in the 
current study (between 6 and 36, compared to our four) and used 
partwords as foils whereas we used nonwords (partwords include a two- 
syllable sequence from a real word while nonwords are made up of 
syllables from real words that didn't appear together as a sequence). 
While having a smaller vocabulary and using nonwords could have 
made our task overall easier compared to that of Kurumada et al., this 
cannot explain why accuracy was higher in the language-like condition 
in our study compared to other two (given that nonwords were used as 
foils in all conditions). Moreover, our results replicate aspects of Kur-
umada's: We also found no overall facilitation in the reduced condition – 
which is parallel in terms of efficiency to their Zipfian condition. That is, 
differences in efficiency can explain both the lack of overall improve-
ment in Kurumada et al., 2013, and the improvement in the language- 
like condition in our study. 

The current study shows that certain efficiency values facilitate word 
segmentation more than others, but why then, do languages display the 
certain range of efficiency values we observed? One possibility is that 
learnability constraints alone drive both the lower and the upper bound 
of the efficiency range: Languages do not have higher (or lower) effi-
ciency values because those are less optimal for word segmentation. In 
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such a scenario, lowering efficiency levels more will not further enhance 
word segmentation in the lab, which may be unmotivated given the 
generally positive effect of increased predictability on learning (Chris-
tiansen & Chater, 2008). Alternatively, and more likely, the observed 
unigram predictability values may reflect the impact of competing 
pressures on language structure (Christiansen & Chater, 2008; Fed-
zechkina, Jaeger, & Newport, 2012; Kirby et al., 2008; MacWhinney, 
1987). Specifically, the narrow range of efficiency values may be shaped 
by two competing pressures: a learnability pressure on the one hand, and 
an expressivity pressure on the other (Bentz et al., 2017; MacWhinney, 
1987; Smith & Kirby, 2008). From a cognitive perspective, learners 
benefit from languages that are more predictable, creating a pressure for 
lower efficiency values. At the same time, languages with lower effi-
ciency values are ineffectual from a communicative perspective. Having 
very low efficiency values would result in a language that is not 
expressive: Such values can be obtained only if very few words take up a 
disproportionate part of the distribution. The noise present in any 
communication channel could create an additional need to push effi-
ciency away from the two extremes (so they don't accidently fall into the 
two ineffectual boundaries). The middle region of the curve keeps 

languages as far as possible from these too extremes, ensuring that they 
are predictable enough for learning while still being adequate for 
communication. 

Under this explanation, word segmentation will not be further 
improved in distributions with efficiency values that are lower than 
what we found in natural languages (under 0.6). To test this, we had run 
an additional study using the same word segmentation paradigm with a 
distribution with a lower efficiency value than natural language (effi-
ciency = 0.4). We used a binary distribution where the frequent word 
appeared 110 times and each of the lower frequency words appeared six 
times. We found that accuracy in this condition was similar to accuracy 
in the language-like condition (N = 40; M = 83.9; SD = 0.16): Perfor-
mance didn't improve more when efficiency was lower. This could 
suggest that the lower bound found in natural language is not driven by 
learnability pressures: Learning did not improve when efficiency was 
decreased further. However, while suggestive, these findings should be 
interpreted with caution (which is why we did not include them in the 
result section). The low frequency words in the lower efficiency condi-
tion were less frequent than those in the language-like efficiency 
(appearing six times vs. nine times, see Appendix 4 for details). This was 

Fig. 4. Adult segmentation accuracy by efficiency (Study 2a and Study 3). (A) Accuracy across conditions. (B) Accuracy only for the lower frequency words. Dashed 
lines represent chance level. Error bars represents confidence intervals of 95%. Points represents individual scores with greater darkness for more individual 
participants. 
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done to maintain the same exposure length between conditions, but may 
have masked the effect of lowering efficiency: additional work is needed 
to compare conditions that differ in efficiency but where the low fre-
quency words are matched for frequency. 

Importantly, the current study is only a first step in investigating the 
efficiency values that languages display and their impact on learning. It 
raises many additional questions that need to be addressed. The first is to 
evaluate how gradual changes in efficiency impact learning. We exam-
ined three levels of efficiency: maximal, reduced and language-like, and 
found a non-linear effect of efficiency reduction on accuracy. However, a 
more systematic investigation is needed to see what happens at addi-
tional values, within and outside the range we found in our corpus 
investigation, and whether learning improves at lower efficiency levels 
(after controlling for token frequency). Such an investigation is needed 
to better understand what underlies the facilitation and what drives the 
range we observed in natural languages. Related to this, it is important 
to assess the range of efficiency values in other linguistic and non- 
linguistic corpora to see how similar they are to the ones we found in 
child-directed speech. A comparison across domains may also illuminate 
the different pressures that impact efficiency values: if learnability plays 
a role in setting the upper bound, then we should find a similar upper 
bound in other domains where a set of elements and the distinction 
between them needs to be learned (e.g., in learning to recognize visual 
objects). A preliminary investigation indicates that efficiency values 
have the same range in adult-to-adult speech: Using the EuroParl corpus 
(a corpus of spoken language created from the European Parliament 
Proceeding in 21 European languages, (Koehn, 2008)), we found that 
efficiency spans a very similar range in adult speech (mean efficiency =
0.62, SD = 0.002, range: 0.58–0.68, (Shor, Reichart, & Arnon, 2022)). In 
future work we plan to examine efficiency values in sign languages: If 
learning is optimal within a certain range, we would expect to find 
similar values in signed language corpora (unfortunately, there are few 
such corpora that are of sufficient size to reliably estimate sign entropy). 
A second question is whether younger learners, including infants, show 
improved word segmentation in language-like efficiency. If the skewed 
nature of the environment plays a facilitative role in language learning, 
as we predict, then infants and younger children should also show such 
effects. There are some indications in the literature that this will be the 
case. Infants are sensitive to frequency distributions in the lab, and can 
utilize differences in sound distributions to determine whether to create 
one or two phonemic categories (Maye, Werker, & Gerken, 2002). Two- 
and three-year-olds' ability to produce unfamiliar four-word sequences 
is affected by the frequency distribution of the fourth word (referred to 
as “slot entropy” (Matthews & Bannard, 2010)). These examples indi-
cate that younger learners are sensitive to the frequency distribution of 
their linguistic input in ways that affect their learning outcomes. We are 
currently in the process of testing 8-month-old infants using a similar 
(infant-adapted) design to see if they also show improved word seg-
mentation in language-like efficiency (compared to a uniform and less 
skewed distribution). 

Our findings give rise to another important question: If distribution 
predictability impacts word segmentation more than distribution shape, 
as Study 3 implies, then why do languages consistently have Zipfian 
distributions? Many other distributions could provide the same effi-
ciency values. We think several communicative and cognitive pressures 
converge to make Zipfian distributions particularly advantageous for 
language learning and use. First, it is possible that for larger lexicon 
sizes, distribution shape will impact learning beyond the effect of dis-
tribution predictability. One limitation of the current findings is that our 
conclusions are based on learning an artificial language with only four 
words, a long stretch from the large lexicons in natural language. With 
numerous words to learn, as in natural language, the graded difference 
in frequency, which is a hallmark of Zipfian distributions, could facili-
tate learning by making each higher frequency word an anchor for 
learning less frequent words. The high frequency words can serve as 
anchors to learn mid frequency words, while these mid frequency words 

can in turn help segment low frequency words. The graded difference in 
frequency may also be beneficial from a lexical access perspective - 
making each word more distinguishable from its lexical neighbors. 
Moreover, the Zipfian distribution - with its graded frequency and 
particular slope - may be optimal for maintaining the facilitative 
language-like predictability levels for a large number of samples and 
sample sizes. When words vary in frequency, an utterance will include 
words from different regions of the frequency distribution. This means 
that the contrast between higher and lower frequency words will hold 
even within a single utterance, which could make the utterance itself 
easier to segment. That is, the particular shape of the Zipfian distribution 
may confer a unique learnability advantage with large enough lexicons, 
by making words more distinguishable and allowing for stable predict-
ability values for varying samples and sample sizes. These cognitive 
benefits are joined by communicative pressures: such distributions are 
claimed to create an optimal trade-off between speaker and listener 
effort (Ferrer-i-Cancho et al., 2020) and to enable a better semantic 
space, by allowing different levels of specificity to be represented by 
different levels of frequency (Lestrade, 2017; Manin, 2008). That is, a 
mixture of pressures (that may be weighted differently during learning 
and processing) could lead recurrence of the Zipfian distribution (with 
its particular shape) in language. We are currently investigating these 
possibilities using computational simulations, mathematical modelling, 
and expanded word segmentation paradigms. 

The improved segmentation we found in both children and adults 
also has broader implications for the study of how humans use distri-
butional information to learn higher-order structure (this includes the 
literatures on statistical learning, sequence learning, and distributional 
learning). Our results highlight the importance of using linguistic en-
vironments that resemble those of actual language, and the danger of 
experimental paradigms that strip away the multiple cues present in 
real-world learning environments. Using uniform distributions is useful 
for assessing the impact of one particular cue (e.g., transitional proba-
bilities) on learning. However, presenting learners with environments 
that are less predictable than natural language may limit our under-
standing of learning in the wild and lead us to underestimate learners' 
abilities (Erickson & Thiessen, 2015; Frost, Armstrong, & Christiansen, 
2019). This is especially risky when asking questions about what can and 
cannot be learned, as is often the case in developmental research. For 
instance, from two uniform conditions alone, we could have concluded 
that children (at the tested age) cannot use transitional probabilities to 
segment novel words when they appear only 19 times. This conclusion is 
not warranted given their performance in the language-like condition 
where less frequent words were learned well. Manipulating distribution 
predictability could similarly impact learning in other domains that 
have been studied in the lab. Language-like efficiency also seems to fa-
cilitates learning novel word-object associations (Lavi-Rotbain & Arnon, 
2019a), but its effect on learning grammatical relations has not yet been 
examined. 

The current study documents a facilitative effect of skewed distri-
butions on an individual level. Extrapolating from this, we can ask 
whether such individual learning biases could explain the prevalence of 
Zipfian (or near-Zipfian) distributions in language. This question is 
inspired by research highlighting the way individual biases can be 
amplified over time to impact language structure (Culbertson & Kirby, 
2015; Kirby et al., 2008; Smith & Kirby, 2008). This has been demon-
strated for various linguistic properties, among them compositionality 
(Kirby et al., 2008), regularization (Ferdinand, Kirby, & Smith, 2019), 
harmonic alignment (Jennifer Culbertson & Newport, 2015) and more. 
If Zipfian distributions help learners discover word boundaries, as our 
experimental findings indicate, this could create a cognitive pressure to 
maintain similarly skewed distributions across languages and time. This 
proposal makes several testable predictions. The first is that languages 
will maintain stable efficiency values over time, even as they change and 
even when new words are introduced. Such stability has been reported 
for the transfer of information across languages (Coupé et al., 2019), as 
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well as for the ratio between word and sequence entropy (Cohen Priva & 
Gleason, 2016). The second prediction is that learners will show a 
cognitive preference for skewed distributions, leading them to change 
their input to make it more skewed. We are exploring this prediction 
(Shufaniya & Arnon, under review) using iterated learning paradigms, 
which can be used to reveal weak individual biases that are amplified 
over time (e.g., Kirby et al., 2008). In these studies, we ask whether 
speakers are biased to produce skewed word distributions in telling a 
novel story and whether this bias leads learners to shift uniform distri-
butions towards more skewed ones in re-telling a story containing six 
nonce words that appear equally often. Our results suggest that word 
distributions became more skewed (as measured by lower levels of en-
tropy), suggesting a cognitive bias for a shift from the uniform. The 
third, and harder to test prediction, is that efficiency values become 
more language-like in the process of emergence, for example in the 
development of new sign languages. We are currently testing all three 
predictions using historical and diachronic corpora as well as iterated 
learning paradigms to see whether the individual learning biases we saw 
in the lab can emerge through the process of cultural transmission. 

5. Conclusion 

In this paper, we investigated the possible learnability advantage of 
one of the most striking commonalities between languages: the way 
words are distributed. We use corpus analyses to show that child- 
directed speech is similarly skewed across languages, and that the 
unigram predictability values found in natural language are uniquely 
facilitative for word segmentation. These findings show that learners are 
sensitive to the structure of the environment as a whole; and point to 
unigram predictability as an important factor in learning. More broadly, 
the findings suggest that Zipfian distributions confer a learnability 
advantage and open up new directions in explaining the impact of 
learning biases on their recurrence in language. 
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Takahira, R., Tanaka-Ishii, K., & Dȩbowski, L. (2016). Entropy rate estimates for natural 
language-a new extrapolation of compressed large-scale corpora. Entropy, 18(10), 
5–8. https://doi.org/10.3390/e18100364 

Zipf, G. K. (1949). Human behavior and the principle of least effort. In Human behavior 
and the principle of least effort. Addison-Wesley Press.  

O. Lavi-Rotbain and I. Arnon                                                                                                                                                                                                                

https://doi.org/10.1111/cogs.12528
https://doi.org/10.1111/cogs.12528
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0145
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0145
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0150
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0150
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0150
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0155
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0155
https://doi.org/10.1371/journal.pone.0181987
https://doi.org/10.1371/journal.pone.0181987
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0165
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0165
https://doi.org/10.1162/089120100750105984
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0175
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0175
https://doi.org/10.1080/03640210802020003
https://doi.org/10.1111/j.1551-6709.2009.01091.x
https://doi.org/10.1111/j.1551-6709.2009.01091.x
https://doi.org/10.1016/S0010-0277(01)00157-3
https://doi.org/10.1016/S0010-0277(01)00157-3
http://langcog.stanford.edu/papers/MKBJF-cogsci2012.pdf
http://langcog.stanford.edu/papers/MKBJF-cogsci2012.pdf
https://doi.org/10.3758/s13423-014-0585-6
https://doi.org/10.3758/s13423-014-0585-6
https://doi.org/10.1016/j.cell.2018.12.032
https://doi.org/10.1016/j.cell.2018.12.032
https://doi.org/10.1111/desc.12593
https://doi.org/10.1126/science.274.5294.1926
https://doi.org/10.1126/science.274.5294.1926
https://doi.org/10.1080/15475441.2016.1263571
https://doi.org/10.1080/15475441.2016.1263571
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5312191%5Cnhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5312191&amp;queryText=mathematicaltheoryofcommunication&amp;newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5312191%5Cnhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5312191&amp;queryText=mathematicaltheoryofcommunication&amp;newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5312191%5Cnhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5312191&amp;queryText=mathematicaltheoryofcommunication&amp;newsearch=true
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0230
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0230
https://doi.org/10.1111/cogs.12692
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0240
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0240
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0240
https://doi.org/10.1371/journal.pone.0023369
https://doi.org/10.1371/journal.pone.0023369
https://doi.org/10.3390/e18100364
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0255
http://refhub.elsevier.com/S0010-0277(22)00026-9/rf0255

	The learnability consequences of Zipfian distributions in language
	1 Introduction
	2 Study 1: word distributions have similar unigram predictability across languages in child-directed speech
	2.1 Methods
	2.2 Results

	3 Study 2: language-like efficiency facilitates word segmentation in children and adults
	3.1 Method
	3.1.1 Participants

	3.2 Materials
	3.2.1 Auditory stimuli
	3.2.2 Experimental conditions
	3.2.3 Procedure

	3.3 Results
	3.3.1 Study 2a: adults
	3.3.2 Study 2b: children
	3.3.3 Study 3: the relative impact of distribution shape and unigram predictability

	3.4 Method
	3.4.1 Participants
	3.4.2 Materials

	3.5 Results

	4 Discussion
	5 Conclusion
	Data availability
	Author contributions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


