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Whale song shows language-like statistical structure
Inbal Arnon1*, Simon Kirby2*, Jenny A. Allen3,4, Claire Garrigue5,6,
Emma L. Carroll7, Ellen C. Garland8,9*

Humpback whale song is a culturally transmitted behavior. Human language, which is also culturally
transmitted, has statistically coherent parts whose frequency distribution follows a power law. These
properties facilitate learning and may therefore arise because of their contribution to the faithful
transmission of language over multiple cultural generations. If so, we would expect to find them in
other culturally transmitted systems. In this study, we applied methods based on infant speech
segmentation to 8 years of humpback recordings, uncovering in whale song the same statistical
structure that is a hallmark of human language. This commonality, in two evolutionarily distant species,
points to the role of learning and cultural transmission in the emergence of properties thought to
be unique to human language.

H
uman language has properties that make
it unique among the communicative be-
haviors of our nearest relatives. Every
human language consists of statistical-
ly coherent parts, such as words, where

elements within those parts are relatively pre-
dictable. Across languages, few of these parts
are highly frequent, many are infrequent, and
there is a power law relation between frequen-
cy and rank [called a Zipfian distribution
(1, 2)]. The presence of such a distribution in
nonhuman communication is debated, with
few studies showing a fit similar to human
language (3) and most only achieving a fit to
a more convex distribution [known as Zipf-
Mandelbrot (4–9)]. Having statistically co-
herent parts and having them follow a Zipfian
distribution facilitates various aspects of hu-
man language learning (10–15).Muchworkhas
demonstrated that language characteristics
that aid learning can arise through cultural
transmission, as language is a sequential be-
havior that is repeatedly learned and used by
multiple generations (16–18). Indeed, a re-
cent experimental study demonstrated that
cultural transmission can promote both prop-
erties (statistically coherent parts and their
Zipfian distribution) in humans (19). This
raises the possibility that the statistical struc-
ture that is a hallmark of human language may

exist in other species whose communication
systems are culturally transmitted and involve
complex sequential behavior. Humpback whale
song has these properties (20–23): It is among
the most complex acoustic displays in the
animal kingdom and is culturally transmitted,
making it an excellent model to test the im-
pact of culture on foundational properties of
human language.
Humpback whale song is long, repetitive,

complex, and structured in a nested hierarchy
(24, 25). Individual “sound elements” are sung in
a stereotyped “phrase,”which is repeatedmul-
tiple times to create a “theme” (24). Several themes
are sung in a stereotyped sequence to form a
“song,”withmultiple songsmaking up a “song
session” (24). Onlymales sing (26), and there is
strong cultural conformity to the current song
arrangement by most males within a popula-
tion (27). However, the song also constantly
changes within a season, progressively leading
to a different song after a few years through
theme turnover (22). In contrast to this slow
change, song revolutions also occur when the

entire song arrangement is rapidly and com-
pletely replaced by a song introduced from a
neighboring population (20, 21). This whole-
sale change is notable;multiple song revolutions
have been documented spreading eastwards
across the South Pacific (21, 28, 29).
Understanding how humpback whales learn

their song is extremely challenging given the
inability to conduct laboratory experiments
on these wild, free-ranging animals. However,
recent work on hybrid songs, where a whale
was recorded in the process of changing his
song during a song revolution, has provided
invaluable data on how songs are learned (30).
Sequence analyses (31) revealed that songs are
learned as segments (complete themes), akin
to birdsong and human language learning.
Revolutionary themes were spliced into the
song at the position of highest structural
similarity (“switch when similar” rule), allow-
ing songs to be combined in predictable ways
(30). Such studies indicate that songs are learned,
and they suggest that whale song exhibits se-
quential structure and that this structure is
relied on during cultural transmission.
If the emergence of the statistical structure

found in human language is driven by it being
learned and culturally transmitted, we may
expect to find similar structure in whale song.
We predicted that (i) statistically coherent sub-
sequences will be present in whale song and
(ii) the distribution of these subsequences will
follow a language-like power-law distribution.
We tested these predictions by applying an
infant-inspired segmentation method (19) to
analyze 8 years of humpback whale song from
a single population. Our method detects dips
in transitional probability between the basic
acoustic building blocks in humpback whale
song (sound elements), uses them to segment
the song into subsequences, and looks at the
distribution of those subsequences. These are
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Fig. 1. An example of our infant-inspired segmentation method applied to whale song data. This is the
start of one recording taken in 2017. For each year, we created a long sequence of sound elements (bottom row).
We then used all the recordings from a particular year to estimate the transitional probabilities (TPs) between
all pairs of sound elements (middle row). Next, we computed the ratios between subsequent TPs (top row) to find
ones that merit segmentation. One ratio, shown in bold, is below 0.5, indicating a big dip in TP—in other words,
the next sound element is unexpected in context. We used these dips as cues to “cut” the sequence, leading
to the addition of a subsequence (i.e., sequence of elements) to the set of units we infer for that year. In the
example above, we would add the subsequence nm(pul)-dhq-sq-dhq-sq-dhq-sq to the units inferred for 2017
[nm(pul) is a pulsed n-shaped moan, dhq is a descending high squeak, and sq is a squeak; see table S3].
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the same cues used by human infants to seg-
ment speech (32, 33): Because words are sta-
tistically coherent, transitional probabilities
within words are higher (on average) than
those between words. Our method does not
assume learners are looking to build a lexicon,
an assumption that cannot be reasonably ap-
plied to whales.

Subsequences found in whale song follow a
Zipfian distribution

If whale song, like human language, contains
statistically coherent parts, we should detect
local dips in transitional probability. To iden-
tify such dips, we estimated the transitional
probability between each two consecutive sound
elements in a given year. For example, if the song
contained the sequence “grunt,” “grunt,” “as-
cending moan,” we estimated the probability
of “grunt” coming after “grunt” in the entire
song. Segmentation boundaries were inferred,
following previous work, on the basis of the
ratio between consecutive transitional proba-
bilities (19). We inferred a segmentation bound-
ary when that ratio was “unusually low.” We
used the ratios and not the transitional prob-

abilities per se to capture relative dips: A tran-
sitional probability of 0.45 may not be very
low; however, a drop from 0.95 to 0.45 would
indicate a meaningful drop. There is no a priori
reason for setting the threshold at a particular
point: given that whale song is hierarchically
structured (24), different settings of the cutting
parameter may discover different types of units
(themes, phrases).
Previous work (19) applying a similar seg-

mentation method to data from human par-
ticipants used a threshold of 0.425 to detect a
boundary. This threshold was derived from a
random baseline that was similar to the struc-
tured output participants produced. However,
we could not derive such a random baseline
for whale song data. Instead, we chose a 0.5
threshold, similar to that used with human
experimental data. That is, we cut whenever
the current transition was half that of the prior
one, suggesting that the next sound element
was unexpected in context. Figure 1 illustrates
our segmentation method for a 2017 song se-
quence. Notably, we repeated the analyses with
two additional thresholds of 0.25 and 0.75 and
show that the results are robust to changes in

cutting sensitivity (see figs. S1 to S4). In other
words, despite differences in how many units
are detected, we find the same statistical struc-
ture at different unit sizes, as expected if chang-
ing the threshold leads to detecting a larger
subset of the existing units.
We ran this segmentation pipeline for each

year separately (as song content differs across
years). Each year’s data included multiple sep-
arate recordings (table S1). Sound elements
from each recording were concatenated after
removing (human-assigned) theme and song-
cycle boundaries. Our method detected sub-
sequences within the song: We performed an
average of 1562 cuts on the data from each
year. For each year, we calculated the frequency
of each of the segmented subsequences (table
S2). Figure 2A plots the frequency distribution
of the segmented units, collapsed across the
years. The distribution shows an excellent fit
to a power law (meanR2 = 0.93, Pearsonproduct
moment correlation). That is, applying a seg-
mentation method based on infant language
learning to whale song resulted in the detec-
tion of subsequences that follow a Zipfian
distribution.

D

ECBA

Fig. 2. Subsequences detected by our infant-inspired segmentation
method in humpback whale song follow a Zipfian frequency distribution.
(A) The frequency of each subsequence ordered by rank, plotted on a log scale
for both axes. There is a small number of highly frequent subsequences and
a long tail of low-frequency ones. We calculated the frequency of the subsequences
independently for each year and then aggregated the frequency by rank over the
eight different years (we show the mean and 95% bootstrapped confidence
intervals around the mean). The straight line is diagnostic of a power law
distribution that is typical of word frequency distributions in human languages.
(B) The same plot, but based on the distribution of the individual sound elements
(the basic acoustic building blocks of whale song). The distribution is skewed

but shows less of a fit to a power law than the distribution of subsequences in
(A). (C) The distribution of the human categorized “themes” (55) in the dataset.
For each distribution in (A) to (C), the mean R2 value is shown. This indicates
how well the distribution fits a power law. The best fit for a Zipfian distribution is
found for units detected using our infant-inspired method. (D and E) Comparison
of the Zipfian fit of our detected subsequences to two baselines. The dashed
lines indicate the R2 for the real data. The histogram in (D) shows the distribution of
R2 values derived by running our full segmentation pipeline on 1000 randomly
shuffled datasets. The histogram in (E) shows the distribution of R2 values for
1000 randomly rotated datasets. The z-scores demonstrate that the real data are
a far better fit to a Zipfian distribution than any of the baseline datasets.
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To ensure that the Zipfian distribution is
not dependent on our particular segmenta-
tion method, we implemented two additional
segmentation pipelines, both of which rely
on cues used by infants and do not assume a
lexicon. One expands the sequential context
(using the transitional probabilities based
on the two previous sound elements), and
the second uses backward transitional prob-
ability (the probability of each sound ele-
ment given the one that follows). This last
pipeline is a particularly good validation be-
cause infants also use backward transitional
probabilities in segmenting speech (34). The
resulting distribution of subsequences using
these additional infant-inspired methods also
showed an excellent fit to a Zipfian distribu-
tion [R2 = 0.93 (fig. S5) and R2 = 0.94 (fig. S6),
respectively].

Zipfian distribution reflects sequential
structure in whale song

We performed several validation tests to en-
sure that the Zipfian distribution was not an
artifact of the distribution of sound elements.
First, we examined the distribution of sound
elements, themes, and our detected subse-
quences. While all three had a skewed dis-
tribution, our detected subsequences showed
the best fit to a power law (Fig. 2, A to C). This
alone does not rule out the possibility that the
skewed distribution of sound elements by
itself will lead to a Zipfian distribution of seg-
mented subsequences. To address this, we cre-
ated 1000 pseudodatasets by shuffling the
sound elements within each song. This pre-
serves the distribution of individual sound
elements but destroys any sequential struc-

ture. We then reran our segmentation pipe-
line with each of these 1000 shuffled datasets
and calculated the R2 to capture the fit to a
power law. If the statistical structure observed
in whale song reflects sequential structure, the
shuffled pseudodatasets should not produce
the same results. Figure 2D shows that the
R2 line of 0.93 derived from the real data is
substantially higher than any derived from
the shuffled datasets (z = 23.09, P < 0.00001).
We also ran this baseline analysis for the two
additional segmentation pipelines mentioned
above with similar results [expanded-context
pipeline, z = 26, P < 0.00001 (fig. S7); backward-
transitional-probabilities pipeline, z = 24.67, P <
0.00001 (fig. S8)].
To further ensure that the distribution we

foundwas related to the specific cuewe used to
segment the song, we performed an additional,
more stringent, validation that preserved the
ordering of the sound elements and the length
distribution of the segmented units, but where
the cuts no longer corresponded to dips in tran-
sitional probabilities. To do this, we generated
1000 “rotated” datasets by taking the cutting
points from the original dataset for each year
and shifting them by a random number of
steps (e.g., if the random number was 5 for a
particular dataset, a cut at position 10 of the
sequence would now be placed in position
15). We calculated the frequency distribution
of the segmented units for each “rotated”
dataset. The fit to the Zipfian distribution in
the real data was again significantly higher
than in the rotated datasets (z = 14.43, P <
0.00001; Fig. 2E). We also ran this conserv-
ative baseline for the additional segmentation
pipelines and found similar results [expanded-

context pipeline, z = 17.55, P < 0.00001 (fig. S9);
backward-transitional-probabilities pipeline, z =
17.32, P < 0.00001 (fig. S10)].

Subsequences found in whale song follow
Zipf’s law of brevity

Zipf also demonstrated that frequent words
tend to be shorter than infrequent words, a
concept known as Zipf’s law of brevity (2).
This relationship between length and fre-
quency is demonstrated in a range of species
(35–37), is taken as evidence for compression
(35), and is seen as a result of adaptation for
communicative efficiency (38). If our meth-
od for discovering subsequences is captur-
ing units that are relevant for whales, we
might expect the subsequences we find to
have lengths that reflect Zipf’s law of brev-
ity. Indeed, Fig. 3A shows a strong relation-
ship between length and log frequency (R2 =
0.62). As above, we ran the shuffled and ro-
tated baselines to ensure that the pattern we
found was not an artifact. The fit to Zipf’s
law of brevity in the real data was vastly bet-
ter than the fit of the two baseline sets [1000
shuffled datasets: z = 37.57, P < 0.00001 (Fig.
3B); 1000 rotated datasets: z = 13.92, P <
0.00001 (Fig. 3C)]. We also ran the same base-
line analyses for the other two segmentation
pipelines, with similar results (figs. S11 and
S14) [expanded-context pipeline, shuffled base-
line, z = 53.09, P < 0.00001 (fig. S12); rotated
baseline, z = 18.61, P < 0.00001 (fig. S13);
backward-transitional-probabilities pipeline,
shuffled baseline, z = 45.46, P < 0.00001 (fig.
S15); rotated baseline, z = 19.32, P < 0.00001 (fig.
S16)]. These analyses clearly show that Zipf’s
law of brevity is a feature of whale song that

Fig. 3. Subsequences detected
by our segmentation method
follow Zipf’s law of brevity.
Each point in (A) is one sub-
sequence (see table S2 for
examples of the most frequent
ones). The figure shows the
frequency distribution of all sub-
sequences discovered by our
segmentation method across the
entire dataset plotted by length
(number of sound elements).
More frequent subsequences are
shorter than less frequent ones,
indicating that the detected
subsequences not only follow a
Zipfian distribution (as shown in
Fig. 2) but also follow Zipf’s
second law, the law of brevity, that
is typical of human language and
other animal communication systems. (B and C) Comparison of the R2 of the real data (0.62, shown with a dashed line) to two random baselines. The histogram
in (B) shows the distribution of R2 values for the relation between frequency and length derived by running our full segmentation method on 1000 randomly
shuffled datasets. The histogram in (C) shows the distribution of R2 values for 1000 randomly rotated datasets. The z-scores demonstrate that the real data are a far
better fit to Zipf’s law of brevity than any of the baseline datasets.
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holds for subsequences detected using several
infant-inspired segmentation methods.

Discussion

Uncovering precisely how whales learn their
songs is a challenging, potentially intractable,
problem. Laboratory experiments such as those
done with human infants are clearly impossible
in this species. However, we can apply infant-
inspired techniques to the songs of humpback
whales. Doing so reveals hitherto hidden struc-
ture in whale song. We detected statistically
coherent subsequences: a characteristic de-
sign feature sharedwith human language. The
frequency of these subsequences closely fol-
lows a Zipfian distribution—this, too, is a prop-
erty found in all human languages. Finally, the
length of the detected subsequences follows
Zipf’s second law, the law of brevity. Frequent
units tend to be shorter than less frequent
ones. Once again, this property is found in all
human languages. This work reveals a deep
commonality between two unrelated species
united by the fact that their communication
systems are culturally transmitted.
One concern might be that the Zipfian dis-

tribution of the detected subsequences is an
inevitable artifact of the distribution of the
basic sound elements, or of our segmentation
procedure, and that such a distribution will be
found whenever cuts are made. However, two
baseline analyses show this to be unlikely.
Neither our shuffled dataset nor our rotated
dataset had a fit close to the one found in the
real whale data (Fig. 2, D and E). Equally, the
fit to a Zipfian distribution is not as strong
when using human-annotated units (sound ele-
ments, themes; Fig. 2, B and C). The subse-
quences extractedwith ourmethod also follow
Zipf’s law of brevity, another linguistic univer-
sal (39–41), suggesting that we are detecting
units relevant to the whales (Fig. 3). Zipf’s law
of brevity is found in a range of species (35, 37),
including humans (42), and likely arises from
optimizing efficient coding (2, 38, 40). The fact
that using transitional probabilities led us to
detect units that follow this law suggests
that humpback whales, like human infants,
may learn their song by tracking transitional
probabilities between elements, and using
dips in those probabilities as a cue for unit
boundary (32).
Our infant-inspired method relies on tran-

sitional probabilities as a cue to segmentation.
This cue is not expected to provide the most
accurate segmentation for natural language,
as language has multiple probabilistic cues to
segmentation. Instead, we wanted to simulate
early learning, relying on cues actually used by
infants without making additional assump-
tions about the learner. Indeed, transitional
probabilities have been used to extract word
candidates from child-directed speech (43, 44)
and are used by infants early on (32, 33), be-

fore the use of other cues such as stress (45).
To ensure that the results were not dependent
on this particular method, we implemented
two additional infant-inspired segmentation
methods, both of which resulted in the detec-
tion of subsequences whose frequency showed
a very good fit to the Zipfian distribution (figs.
S5 to S10). These converging findings present
evidence that Zipfian distributions are found
inwhale songwhen using infant-inspiredmeth-
ods to detect units.
Of course, there are many differences be-

tween whale song and human language. Above
all, expressions in language have semantic con-
tent. The meaning of sentences is composed
of themeanings of the parts and how they are
put together. We make no such claim for whale
song. We have little understanding of the
“meaning” of the songs, let alone the different
units, for humpback whales. Furthermore,
having similar statistical structure does not
entail similar expressive function. In fact, sim-
ilar statistical structure is also found inmusic—a
culturally transmitted behavior where indi-
vidual units do not have explicit expressive
meaning but nevertheless show a good fit to
a Zipfian distribution (46). While there are
multiple explanations for the presence of Zipfian
distributions in human language [see (1) for a
review], only a subset of them seem relevant
for the analysis of whale song. Existing ac-
counts (for human language) can be broadly
divided into ones pertaining to the coding of
meaning (36, 41, 47, 48), to communicative
efficiency (38, 49), and to learnability (11, 50).
As discussed above, it is unlikely that explana-
tions pertaining to meaning are relevant for
whale song (5, 23, 51), leaving efficiency and
learnability explanations as the most relevant.
Our work is by nomeans the first to look for

linguistic laws in nonhuman communication
(52, 53). Indeed, much work has specifically
focused on Zipfian distributions. However, as
noted above, the vast majority of studies have
only found a fit to Zipf-Mandelbrot’s exten-
sion, which has an additional parameter, and
will necessarily fit a wider range of data. These
findings could be, and sometimes are, interpreted
to reflect a meaningful difference between hu-
man language and nonhuman communication
(5). Alternatively, they could arise from the
choice of “units” being counted, as we have seen
here; counting individual sound elements in
whale song leads to a Zipf-Mandelbrot dis-
tribution (Fig. 2B) (5), whereas counting sub-
sequences detected using our segmentation
method reveals a pure Zipfian distribution. This
leads to a strong prediction that applying our
infant-inspired segmentation method will lead
to a similar shift fromZipf-Mandelbrot to Zipf in
species with learned sequential signals. Song-
birds provide a particularly promising model
to explore this prediction, as multiple passerine
species have culturally transmitted songs and

several show a good fit to the Zipf-Mandelbrot
distribution [e.g., (6–8)]. Some, including house
finches (Haemorhous mexicanus) and zebra
finches (Taeniopygia guttata), are also sensitive
to transitional probabilities in learning (8, 54).
We have revealed a deep commonality be-

tween two unrelated, evolutionarily distant spe-
cies, humans and humpback whales, united by
the cultural transmission of their communica-
tion systems. This points to the crucial role of
learning and transmission in the emergence of
structure within such systems. Whether the
units detected by our infant-inspired segmen-
tation method are salient to the whales them-
selves remains an open question. These findings
also raise the intriguing possibility that similar
statistical structure will be foundwherever com-
plex sequential behavior is transmitted cultur-
ally, and they suggest that our understanding
of the evolution of language can benefit from
looking not only at our closest primate rela-
tives but also at cases of convergent evolution
elsewhere in nature.We can do this by looking
beyond the proximate functions of language,
for example, as a system conveying semantic in-
formation, and instead consider how language is
learned and transmitted culturally overmultiple
generations. Once thought of as the hallmark of
human uniqueness, it may transpire that foun-
dational aspects of human language are shared
across species.
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