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Cultural evolution creates 
the statistical structure of language
Inbal Arnon 1* & Simon Kirby 2

Human language is unique in its structure: language is made up of parts that can be recombined 
in a productive way. The parts are not given but have to be discovered by learners exposed to 
unsegmented wholes. Across languages, the frequency distribution of those parts follows a power law. 
Both statistical properties—having parts and having them follow a particular distribution—facilitate 
learning, yet their origin is still poorly understood. Where do the parts come from and why do they 
follow a particular frequency distribution? Here, we show how these two core properties emerge 
from the process of cultural evolution with whole-to-part learning. We use an experimental analog 
of cultural transmission in which participants copy sets of non-linguistic sequences produced by a 
previous participant: This design allows us to ask if parts will emerge purely under pressure for the 
system to be learnable, even without meanings to convey. We show that parts emerge from initially 
unsegmented sequences, that their distribution becomes closer to a power law over generations, and, 
importantly, that these properties make the sets of sequences more learnable. We argue that these 
two core statistical properties of language emerge culturally both as a cause and effect of greater 
learnability.

Two features of language provide the fundamental elements upon which linguistic structure is built, but their 
origins are surprisingly still poorly understood. First, language is segmented into smaller parts that are recom-
bined sequentially: sounds are combined to form words and words are combined to form sentences. Second, the 
frequency distribution over words is highly skewed. While the languages of the world differ in many respects, 
they are consistently similar in having parts, and having those parts follow a particular frequency  distribution1. 
In this paper we show, using an experimental analog of cultural evolution, that these features of language make 
it more learnable, and furthermore that they arise in the process of cultural transmission as a consequence of 
language repeatedly being learned by multiple generations of language users.

A fundamental challenge for an infant acquiring language is to discover what the relevant parts are. In spoken 
language, unlike in many written languages, word boundaries are not clearly marked. While there are multiple 
cues to word boundaries (phonotactics, stress patterns, statistical information, e.g.,2), none of the cues are fully 
reliable, and all have to be discovered by the infant. Discovering the correct units is a crucial first step for learn-
ing how to productively combine them. How do infants discover the relevant units without knowing what they 
are looking for?

One answer to this puzzle is that children are able to pick up on the statistical regularities that act as a cue 
for word boundaries in speech. One such cue, that has been extensively studied, is the transitional probabilities 
between  syllables3. The idea is that children can rely on low-level statistics about which syllable is likely to fol-
low another as a way to extract word boundaries. If language is made up of a repertoire of parts that recombine, 
then the transitional probabilities within these units will be higher than the transitional probabilities across unit 
boundaries. This is indeed what happens in language: the transitional probabilities of syllables that form a word 
are higher than those of syllables that cross word  boundaries4. This reflects the fact that many different sounds 
can appear after a word, because it can be followed by many different words, while fewer sounds can follow the 
start of a word. Take the sequence pretty baby as an example, there are many different words that can appear after 
pretty (e.g., car, boy, hat, cat, and many more) but there are only few sounds that can appear after pre and result 
in a possible English sequence (premature, precise, and some more). This makes the transitional probability of 
syllables within a word (of the syllable ty given pre in our example) higher than that of syllables across word 
boundaries (ba given ty). A wealth of experimental evidence shows that infants, children and adults can track 
these transitional probabilities and use them to segment a novel continuous speech stream into its constituent 
parts  (see5 for a review). The utility of transitional probabilities in discovering relevant units is not limited to 
language. Changes in transitional probabilities serve as a cue to unit boundary across domains: high transitional 
probabilities lead to grouping elements together while low transitional probabilities lead to separating them. 
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For example, infants can use the transitional probabilities between visual shapes to detect recurring units in a 
continuous stream of  shapes6.

This statistical learning literature offers a solution to how language learners might segment whole utterances 
into parts, given that those parts already exist. In other words, if language is already made up of recombinable 
parts then statistical learning can extract them. But we are left with a puzzle. How does language end up being 
constructed of parts whose combination makes such a learning strategy effective? In other words, where do the 
parts come from? One intuitive answer is that language is made up of parts because of the nature of the mean-
ings we want to convey with language, which are themselves made up of parts. In other words, the structure 
of language arises from a pressure for us to use language expressively to communicate about a world that has 
 structure7. However, here we test a stronger hypothesis: that parts will emerge purely under pressure for language 
to be learnable, even if there were no meanings for language to convey. This is an appealing hypothesis to test 
because infants begin to segment language prior to them learning what the parts  mean2,8. Furthermore, when we 
look beyond language to other learned systems, like music, we see the presence of parts that can be recombined 
even without a mapping onto meaning.

A second striking fact about the statistical structure of language has to do with the frequency distribution 
of the parts. If we look at the lexicon of any language, it is immediately apparent that not all words occur with 
equal frequency. The frequency distribution of words is, in fact, highly skewed. A small number of words have 
a very high frequency and there is a long tail of low frequency words. Moreover, frequency doesn’t decrease in a 
linear fashion. In fact, the frequency distribution of words in a language tends to follow a power law distribution, 
such that a word’s frequency is inversely related to its rank. This recurring distribution was first highlighted by 
Zipf, and is often called a Zipfian  distribution1. Words follow a Zipfian (or near-Zipfian,9) distribution across 
spoken and signed  languages9–12, in child-directed  speech13, and across different grammatical categories within 
 language9,14. There is ongoing debate about the source of such distributions and whether they reflect foundational 
properties of human cognition and  communication9,15–17.

Interestingly, Zipfian distributions seem to provide a facilitative environment for learning. Word segmenta-
tion in an artificial language is improved when learners are exposed to a skewed distribution compared to a 
uniform one (where all elements appear equally often,18,19). Moreover, participants are best able to segment 
sequences into their constituent parts when the distribution of these parts has a skew similar to that found in 
real languages (as reflected in entropy, 19). Skewed distributions have also been found to facilitate visual statistical 
learning (discovering recurring visual triplets in a continuous stream,20); cross-situational word  learning21; and 
learning novel grammatical  categories22 and  constructions23. Speakers seem to have a cognitive preference for 
such distributions: uniform distributions of made-up nouns become skewed when a story is transmitted from 
one participant to  another24. Though there are relatively few studies that explore the impact of skew on learning, 
the ones that do, find that skew can be beneficial for learning a range of linguistic and non-linguistic relations. 
These findings show that Zipfian distributions can facilitate learning, but they leave us with a second question: 
why does this facilitative distribution arise in language?

Both of these recurring, consistent properties of language—having parts and having them follow a particu-
lar frequency distribution—have learnability consequences: They help learners discover and learn the relevant 
linguistic units. In this paper, we aim to demonstrate that the fact that these statistical properties of language 
facilitate learning is also the reason that they exist in the first place. In other words, the statistical structure of 
language is both cause and effect of increased learnability. This seemingly circular argument follows from a view 
of language as arising from a process of cultural transmission where the product of one generation’s learning 
is the target for the next. In other words, the language that a child is trying to segment is the result of a similar 
segmentation process that their care-givers and others in their language community went through in the past. 
Similarly, the outcome of their learning will go on to provide linguistic data for a future generation of learners. 
This process of iterated learning has been shown to explain the origin of a wide range of structural properties 
of language such as  compositionality7, duality of  patterning25,  regularity25, lexical  semantics26, and even non-
linguistic structure such as drumming  patterns27 and verse  templates28. In general, iterated learning over mul-
tiple generations tends to lead to languages that are optimised for the very learning biases that the individuals 
transmitting those languages  have29,30.

We propose here that the process of iterated learning, combined with a particular learning strategy—one 
that starts with wholes before discovering parts—will give rise to these two statistical properties of language. 
While the textbook description of language acquisition often highlights part-to-whole learning, where smaller 
units are combined into larger ones (e.g., syllables to words, words to sentences), there is growing evidence that 
whole-to-part processes—where wholes are later analysed into parts—also play an important role in language 
 learning30,31. In particular, such processes are important for learning linguistic structure. Because infants initially 
don’t know where word boundaries are, or even that words exist, their early building blocks will include a mix of 
single words and multiword sequences that are only later segmented into their parts (e.g., what’s-this). Learning 
from larger units that are then segmented can facilitate mastery of the arbitrary grammatical relations that hold 
between words (like those between gender marked articles and nouns in many  languages32). Adults, because 
they already know what words are, and know the words of their first language, will rely less on multiword units, 
with detrimental consequences for learning grammatical relations. Indeed, there is experimental evidence that 
infants extract multiword units from early  on33,34; that adults do so  less35,36; and that starting with larger units can 
facilitate learning  grammar37–40. This literature illustrates the presence of whole-to-part learning in real language 
acquisition, and its utility for learning linguistic structure.

Building on the different literatures on statistical learning, iterated learning, and whole-to-part learning, we 
predict that distributional properties of language can, and will emerge through the process of cultural transmis-
sion. The consequence of a whole-to-part learning strategy being iterated over generations of cultural transmis-
sion will be a gradual emergence of sub-parts that are recombined from initially holistic  languages41,42. The 
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emergence of parts should be reflected in the statistical properties of the language, with higher transitional 
probabilities within units compared to across unit boundaries. Furthermore, if the skewed distribution of these 
parts is both a cause and effect of increased learning, we expect to see the distribution becoming increasingly 
skewed over time, getting closer to the power-law typical of language.

To test this idea, we will turn to an experimental analog of the cultural evolution of language in which par-
ticipants learn a “language” that was generated by a previous participant and have to reproduce it. Their output 
becomes the input for the next participant. In our version here, the transmitted behaviour is not linguistic, but 
instead consists of sets of colour sequences. Each sequence is analogous to an utterance, with the set being the 
“language” to be learned. Crucially, the initial set of sequences is not structured: all colour combinations are 
equally probable, meaning the sequences are not made up of recurring parts. We want to see whether the initial 
set will come to have, through transmission, the two statistical properties found in language: having parts and 
having them follow a particular frequency distribution. We draw on the statistical learning literature to look for 
parts in the sequences (see details below).

Importantly, the task is explicitly framed as copying wholes rather than finding recombinable parts, and is 
designed to make copying the whole difficult, creating a pressure on the systems to change to become more 
learnable. We use a non-linguistic task for two reasons. First, in this task, both the wholes (the sequences) and 
the parts (should they emerge) do not have meaning. This allows us to test the hypothesis that having statisti-
cally differentiated parts, and having them skewed in a particular way can both emerge, and facilitate learning, 
independently of meaning. Second, using non-linguistic stimuli, especially whose individual elements (and 
combinations) lack meaning, minimises the risk that participants will simply transfer knowledge of the statisti-
cal structure of their own language onto the behaviours that are being transmitted culturally. Any recombinable 
parts that do emerge will be the result of the system adapting through iterated learning to the implicit biases of 
the learners rather than being imposed explicitly by participants.

Methods
We will reanalyse the results of an iterated sequence learning  experiment43 to test our hypothesis that the statisti-
cal structure of language emerges from the process of cultural evolution through iterated learning by whole-to-
part learners. In the original experiment, our aim was to test whether abstract sequences transmitted through 
iterated learning would, over generations, become easier to learn. However, we did not analyse the internal 
structure of those sequences nor was the experiment set up to explore that internal structure. In this sense, 
reanalysing this dataset provides a particularly strong test for our hypothesis, as it removes the typical “researcher 
degrees of freedom” when an experiment is designed with a particular hoped-for result in mind.

The experiment is modelled after the electronic “Simon game” toy. Participants are shown a sequence of lights 
flashing on a two-by-two grid of four colours (red, green, yellow, blue). They are then prompted to immediately 
recall that sequence of lights by pressing the relevant buttons on the grid and given feedback in the form of a 
score based on how close their response was to the target. Unlike in the original game, where players first see 
only one flash, then two, then three, and so on, in our experiment, participants see an entire sequence and have 
to reproduce it.

Participants are organised into transmission chains, where the responses of participant n in a chain are used as 
the sequences that participant n + 1 has to copy (with the order of sequences randomised between participants). 
Each participant sees a set of 60 sequences. The set is seen twice, in two blocks, with the sequences randomly 
ordered within each block (participants are not aware there are two blocks, they see all the sequences one after 
another, with no break between blocks or sequences). We record and analyse their responses to the second block. 
The first participant in each chain is given a set of random sequences to copy, with the constraints that each 
sequence consists of 12 lights, and each of the four colours is equally frequent within the sequence. The initial 
random set is different for each chain. The length of the initial sequences was set at 12 as to be not too easy and 
not too hard: we want the sequences to be hard enough to copy so that errors are made but not too hard so that 
none of the initial sequence can be reproduced. The copied sequences are then transmitted to the next partici-
pant in the chain. If participants produce responses that are shorter than length 6, then that target sequence is 
presented again to the participant at the end of the block.

We run each chain for 10 generations, so we have 660 sequences to analyse per chain (one random set of 
60 sequences, and 10 sets of 60 sequences produced by the participants). We analyse the results of six chains, 
all run using the exact same design (four were initially reported  in43), and two were reported  in44). This yields 
a total of 3960 sequences organised by generation and chain (60 sequences X ten generations X 6 chains + the 
six initial random sets, containing 360 sequences). Note that the task is not presented as one of copying a set of 
behaviours, that is, participants are not instructed to attend to properties of the set as a whole. Any systematicity 
that emerges across the sequences is therefore a result of an implicit bias affecting the evolving sets of sequences. 
As mentioned above, the task is designed to be hard, especially at the start of the chains: we expect participants to 
make many errors in reproducing the sequences, particularly in early generations. We ask whether those errors 
lead to the emergence of more structured (and easier to learn) sets of sequences.

Results
The full dataset and code for recreating all the figures and statistical analyses is available at: https:// github. com/ 
smkir by/ cultu ral_ evolu tion_ of_ stati stical_ struc ture. Figure 1 shows that the error rate on the task decreases 
over generations. Error is calculated as the normalised Levenshtein distance between the target sequence and 
the sequence the participant produced, such that 1 would be a production with nothing in common with the 
target, and 0 would be perfect copying. We fit a linear mixed effects model predicting error, with fixed effect for 
generation, a random intercept for chain, random by-chain slopes for generation, and a random intercept for 
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identity of original sequence in generation 0 (random by-chain slopes for sequence identity led to a singular fit, 
so this was simplified to intercept only). We find a significant reduction in error over generations (β = − 0.023, 
SD = 0.0032, p < 0.001). In other words, the sets of sequences are changing in such a way as to make copying 
those sequences easier for participants. This is a typical result for iterated learning experiments, where just by 
virtue of being transmitted from one generation to the next, learned behaviours change to become more learn-
able. Figure 2 shows an example sequence in one particular chain as it changes from one generation to the next 
(the figure also shows the parts discovered in each sequence using the segmentation method described below). 
Sequences that are easier to copy will tend to persist, whereas sequences that are harder to copy will change due 
to the introduction of errors. In this way, the sequences evolve to become more copyable over time.

Segmentation emerges
We want to use this dataset of sequences to test whether parts emerge over generations. Recall that the statistical 
learning literature shows that changes in the transitional probabilities between syllables can be a cue to word 
boundary. Segmentation occurs when there is a drop in the transitional probabilities in a sequence of syllables. 
Such a drop is indicative of a word boundary since the transitional probabilities within words are on average 

Figure 1.  Change in error across generations in the experiment. The error value shown is an average across the 
different chains for each generation (error is calculated for each sequence, then averaged across all sequences 
in the set, then averaged across the six chains). Error bars are bootstrapped 95% CIs. There is a clear downward 
trend in error, indicating that the sets of sequences in later generations are easier to copy than those of earlier 
ones. The sequences have evolved to become more learnable.

Figure 2.  What happens to one particular sequence (out of 60) in one particular chain (out of 6) in the 
experiment. The numbers refer to generations in the experiment, with generation 0 indicating the initial random 
set, and subsequent generations being the sequences our participants produced. Initially, the random sequences 
are hard to copy and changes are introduced, but over generations the changes introduced make the sequences 
easier to repeat accurately. Dashed lines indicate particularly low transitional probabilities detected by our 
segmentation method described below, marking boundaries between emerging parts. The degree to which a 
single sequence like this is easy or hard to copy depends also on the other 59 sequences in the set. Equally, what 
counts as a segmentation boundary (low transitional probability) depends on the transitional probabilities 
calculated over the whole set.
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higher than those between words. That is, when a language has recurring words, the transitions within words 
become more predictable than the transitions between words. We can ask if a similar pattern emerges in our 
data. In the Simon game task, the relevant elements are the four colours, so the transitional probabilities in ques-
tion are the probability of a colour appearing given the context of previous colours. If parts are emerging, this 
should result in some colour transitions becoming more likely than others. Drawing on the statistical learning 
literature, we create a pipeline to detect dips in transitional probabilities in the sequence of colours that would 
reflect the emergence of parts.

One way to operationalise this is to look at the ratio between subsequent transitional probabilities as we scan 
across the elements in a sequence. In estimating the probabilities, we use the two previous elements: We esti-
mate the probability of a colour given the two previous colours. Another approach would have been to use only 
the previous colour, but since there are only 4 colours, this would yield a very coarse estimate of the sequential 
structure of the data. Alternatively, we could have used the full conditional probabilities (i.e. all colours in the 
sequence up to this point). However, given the small data set size in each generation (only 60 sequences) this 
would have resulted in severe data sparsity problems. The use of two previous colours is therefore a compromise 
between these two constraints.

We calculate the maximum likelihood estimate of these transitional probabilities based on the full set of 60 
sequences in a particular generation for a particular chain. So, for example, for the sequence “RYGR”, we estimate 
the probability of “G” given “RY” across the entire set. To do this we estimate the probability of occurrence of the 
trigram “RYG”, and divide it by the estimated probability of occurrence of the bigram “RY”. These probabilities 
are estimated using the entire set of 60 sequences. We then estimate the probability of “R” given “YG” in the same 
way. If we find that “G” is a highly likely continuation given “RY” but “R” is relatively unlikely given “YG”, then 
we have a cue to segment this sequence as “RYG | R”.

We need some way of judging when a transitional probability is low enough to merit a segmentation bound-
ary. One way to do this would be to rely on the transitional probabilities themselves, and posit a boundary 
whenever they are lower than a certain value. However, this would not allow us to capture dips that are relative 
rather than absolute. For example, while a transitional probability of 0.4 may not be extremely low, a drop in a 
given sequence from a transitional probability of 0.99 to one of 0.4 would indicate a meaningful dip. To capture 
such relative dips, we use the ratio between consecutive transitional probabilities as our cue for segmentation. 
That is, we calculate the ratios between each transitional probability and the previous one in a sequence, and infer 
a boundary when that ratio is unusually low (in other words, when the transitional probability drops dramati-
cally). Note that ratios under 1 indicate a drop in transitional probability while ratios over 1 indicate an increase 
in transitional probability (see Fig. 3 for a worked example of this procedure).

We now need a way of judging when a transitional probability ratio is unusually low as to warrant cutting 
the sequence at that point. If we make the critical threshold for cutting too low, we risk missing real points 
of segmentation. If we make it too high then we risk cutting sequences that should be treated as wholes. We 
approach this by using the initial random sequences as a baseline: recall that this set of sequences was created 
to not have sequential structure (that is, the transitions between colours within a sequence are independent and 
not predictive). We can use this non-structured set to estimate how likely a particular drop in transitional prob-
ability is if there was no structure in the set of sequences. In this way, we can look for unexpectedly large dips in 
transitional probability in our data and use this as our cutting ratio. To do this, we calculate the distribution of 
estimated transitional probability ratios for each of the six random initial sets (one from each chain). We then 
create an aggregated distribution of all those ratios, and take the 5% lower tail of this ratio distribution as our 
cutting threshold: we cut when the ratio is lower than that (ratio = 0.425).

Using this pipeline we can build an inventory of parts—a lexicon essentially—for each generation. Figure 4 
shows that over generations we get a decrease in the length of the distinct units found by this method, showing 

Figure 3.  An example of our procedure for segmenting sequences. The example shows one of the sequences 
from the final generation of the experiment, along with inferred segmentation boundaries. Above the sequence 
we show the transitional probabilities for each colour given the previous two colours in the sequence. These 
transitional probabilities are estimated from the full set of 60 sequences for this particular generation in this 
particular chain (see text). We posit a unit boundary when there are drops in the transitional probabilities in the 
sequence. We operationalise this as a particularly low ratio between subsequent transitional probabilities. The 
ratios are shown in the top row of the figure. For example, the drop in transitional probability from 0.35 to 0.13 
is lower than our threshold of 0.425 (see text) and is therefore indicative of a boundary between the first green 
and the first yellow in the sequence. Transitional probability ratios lower than our cutting threshold are shown 
in red, and ones above our threshold are shown in green. Note that a limitation of our method is that we can 
never place a boundary prior to the third colour in a sequence (because the transitional probabilities are based 
on the previous pair of elements, and the ratios on pairs of subsequent transitional probabilities).
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that the sequences are being cut into smaller and smaller parts. In other words, the segmented units are becom-
ing shorter. We fit a linear mixed effects model predicting unit length, with fixed effect for generation, a random 
intercept for chain, and random by-chain slopes for generation. We show a significant reduction in unit length 
over generations (β = − 0.17, sd = 0.044, p = 0.012). This is the case even if we remove the initial random language 
from the analysis (β = − 0.11, sd = 0.040, p = 0.041).

Importantly, we find that the within-unit transitional probabilities increase over generations, whilst the 
between-unit transitional probabilities remain very low, meaning that the set of sequences are evolving cultur-
ally to have increasingly clear cues to segmentation (Fig. 5). We calculate these two measures in the following 
way: After segmenting the sequences in each set using our pipeline, we can categorise the transitional prob-
abilities into ones that occur within units and ones that occur between units. For example, if we had segmented 
the sequence “RYGR” into “RYG | R”, then the transitional probability of “G” given “RY” would be within a unit 
while the transitional probability of “R” given “YG” would be between units. Since we segment our sequences 
only when there is a dip in transitional probability, the between-unit transitions are necessarily low, however 
the transitional probabilities within units are increasing relative to the between-unit transitions, indicating the 
increased statistical coherence of the segmented units.

We fit a linear mixed effects model predicting transitional probabilities with fixed effects for generation, and 
type of transitional probability (within unit or between units), and their interaction, a random intercept for chain, 
and random by-chain slopes for generation. This shows a significant interaction of transitional probability type 
and generation, demonstrating that the increase in probability over generations is greater for the within-unit 
transitional probabilities (β = 0.010, sd = 0.00070, p < 0.001).

These results demonstrate that purely by transmitting sequences from one generation to the next, and despite 
the task not being framed as one of learning a structured set, system-wide statistical structure emerges. The 
system develops clearer cues to segmentation, reflected in an increasing difference between within-unit and 
between-unit transitional probabilities. In other words, parts are emerging from wholes.

Figure 4.  Change in the length of the units (i.e., the parts segmented by our procedure) over generations. The 
vertical coordinates represent the average length of all the units in a particular generation, averaged across all 
of the chains. Any identical units are counted multiple times. Error bars are bootstrapped 95% CIs. Units are 
getting shorter, indicating that smaller parts are emerging out of the larger wholes over generations.

Figure 5.  Change in the transitional probabilities within and between units over generations. Error bars are 
bootstrapped 95% CIs. After applying our segmentation method, we can classify each transitional probability 
within a sequence as being within a unit or between two units. Each point on the graph shows the means 
(for a particular generation across all chains) of the within-unit and between-unit transitional probabilities. 
Necessarily, due to the way we infer cutting points, the across-unit probabilities will be lower, even in generation 
zero. The key point here is that the transitional probabilities within units increase.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5255  | https://doi.org/10.1038/s41598-024-56152-9

www.nature.com/scientificreports/

Statistical structure emerges
Now that we have an inventory of units for each generation and chain in our experiment, we can ask how the 
frequency distribution of these units changes as the sets of sequences are transmitted by iterated learning. We 
do this by counting the frequency of each proposed unit in the inventory for each generation in each chain and 
plot that frequency against their rank in Fig. 6. This shows that from a relatively uniform starting point (with 
almost every item appearing only once in the random initial set), a highly skewed distribution emerges, with the 
most frequent units appearing between 5 and 10 times more often than the least frequent items. In other words, 
a skewed distribution has emerged purely as a result of transmitting these sequences from one generation to the 
next through iterated learning.

We can ask how close this distribution is to a Zipfian one, and how it changes over generations, by looking at 
the  R2 of log(frequency) and log(rank). For each generation in each chain, we calculate this  R2. We can see that 
the fit to a Zipfian distribution increases over generations (Fig. 7). We fit a linear mixed-effects model predicting 
R2 with a fixed effect for generation, a random intercept for chain, and random by-chain slopes for generation. 
We find a significant increase in  R2 over generations (β = 0.022, sd = 0.0066, p = 0.020).

Figure 6.  Distributions of units in the sequence sets over generations. Each is plotted as a count of how often 
each unit occurs against its frequency rank. Bootstrapped 95% CIs across chains are shown as a shaded region 
around the mean. From the initial relatively uniform distribution, a skewed distribution emerges with a small 
number of high frequency units and a long tail of low frequency ones.

Figure 7.  The  R2 of the correlation between log frequency and log rank for the unit distributions given in 
Fig. 6, plotted against generation (generation 0, the random initial language, is removed as for many of the 
chains the distribution was completely flat and a correlation coefficient could not be calculated). Error bars are 
bootstrapped 95% CIs. Over time, word distributions are becoming more Zipfian, reflected in an increasingly 
linear relationship between log frequency and log rank.
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We can better quantify the skew in these results by calculating the entropy of the units in the sequence sets. 
This gives us a simple and direct measure of how skewed the frequency distributions are. For a given number of 
units, a uniform distribution will have a higher entropy than a skewed distribution. Figure 8 shows that entropy 
decreases over generations, even when we control for the number of distinct units that are inferred by our seg-
mentation procedure. We fit a linear mixed effects model predicting entropy, with fixed effects for generation and 
the number of distinct units, and a random intercept for chain (including by-chain slopes leads to a singular fit, 
so we use the simpler random effect structure here). We included the number of units to ensure that the effect of 
generation is not driven by a change in the number of units (fewer units would lead to lower entropy). We find 
a significant reduction of entropy by generation (β = − 0.033, sd = 0.0055, p < 0.0001). We also, as expected, find 
that entropy increases when the number of units grows (β = 0.0028, sd = 0.00084, p = 0.0013).

Learnability as both cause and effect
Taken together, these results demonstrate that iterated learning can produce two consistent properties of lan-
guage, the emergence of parts and their skewed distribution.

We have shown that these properties can arise out of a system being transmitted by iterated learning, but 
can we also show that this emergent statistical structure actually improves the learnability of the system? Fig. 9 
shows the relationship between the entropy of the words in the set the participant was exposed to and the error 
rate for that participant. There is a clear relationship between statistical structure and learnability. A Pearson’s 
product-moment correlation shows that error and entropy are positively correlated (r = 0.52, p < 0.001).

The statistical structure that emerges through iterated learning makes the systems that emerge more learn-
able. To put it another way, the emergence of parts and their skewed distributions are both the cause of increased 
learnability, and the effect of that learning iterated over generations.

Figure 8.  Entropy of units plotted against generation. Entropy is calculated for each generation in each chain 
and the average across chains is plotted. Error bars are bootstrapped 95% CIs. There is an initial increase in 
entropy due to an increase in inventory size (since the initial random set of sequences has very few segmentable 
units), but then the increasingly skewed distribution leads to a reduction in the entropy of units over 
generations.

Figure 9.  How error is related to entropy in the experiment. Each point is a single participant. The best-fit line 
plus 95% CIs on the fit is shown. More skewed distributions of units (i.e., sequence sets with lower entropy) are 
harder to learn (i.e., are copied with greater error).
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Discussion
The expressive power of language—one of our species’ most extraordinary traits—is enabled through the recom-
bination of smaller parts into larger wholes. Unlike in many communication systems in nature, these recombin-
able parts of language are not innately given, but are learned by children from the language they hear. To discover 
the parts, children must somehow extract them from a continuous speech stream. These parts are not uniformly 
distributed but follow a characteristic power law distribution with a small number of high frequency words, a 
large number of low frequency ones, and a non-linear decrease in frequency.

In this paper we have shown that both of these properties of language—having parts and having them dis-
tributed in a particular way—can emerge through cultural transmission when learners are simply reproducing 
wholes. Using a non-linguistic task, we show that sets of colour sequences become more structured and more 
learnable over time. Specifically, the increase in structure and learnability comes from the emergence of parts 
whose distribution becomes more Zipfian over time. We identified these parts using transitional probabilities 
between colours—the same statistical measure infants use to detect word boundaries. Our findings show that the 
transitional probabilities within ‘units’ increases over generations, that the entropy of their distribution decreases 
and becomes more Zipfian over time, and that the entropy over these units is correlated with error. We propose 
that language gains statistically discoverable parts with an increasingly skewed distribution precisely because it 
is learned by multiple generations of language users. The statistical structure of language is both cause and effect 
of greater learnability of language.

How does this happen in our study? Our results cannot speak directly to this question, but we offer one pos-
sibility here. In our task, participants copy sequences which initially have a largely uniform statistical structure: 
each colour is approximately equally likely to follow any other one. While copying these patterns, participants 
nevertheless tend to produce some pairs of colours more frequently than others, at first purely through errors. 
This means that for the next generation of learners the sequences are no longer as statistically uniform. This leads 
to patterns of transitional probabilities where a low probability transition will sometimes follow a high probability 
one. Learners take this as a cue for a boundary between sub-parts of the sequence. In this way, a repertoire of unit-
candidates emerges. The frequency of these unit-candidates may increase over time, creating larger differences 
in the probability of transitions between units and within units. This frequency advantage will be amplified from 
one generation to the next, leading to a more skewed distribution that is facilitative of further learning. In this 
‘rich-gets-richer’ scenario, a slightly skewed distribution leads to increased utility of transitional probabilities as 
a cue to unit boundary, which leads to an increased repetition of the units, a more skewed distribution, and less 
error for the more frequent units. This process is repeated and amplified over time, leading to increased skew 
and a correlation between skew and learning. In this view, even though learners are faced with a task explicitly 
framed as one in which whole sequences are copied (with no expectations that these sequences have sub parts, 
let alone ones that persist over different sequences), parts are eventually created. These are recombined to create 
a set of sequences that are optimised for transmission over generations.

On the face of it, this whole-to-part strategy may seem counterintuitive, compared to one in which individual 
parts are learned first and then recombined. One reason for the existence of such a strategy is the environment 
itself. Parts do not come ready segmented. Language provides us with multiple such examples: phonemes can 
be discovered from whole-word  representations45, morphemes from multi-morphemic  words46, and words from 
multiword  units47. We propose that a second reason for its existence is that the whole-to-part strategy can actu-
ally facilitate various aspects of learning. In language, whole-to-part can facilitate mastery of the often-arbitrary 
relations that hold between the parts. For example, article-noun agreement is learned better when learners start 
with article-noun chunks that are then segmented, than when the article and noun are learned separately and 
then  combined38,39. Whole-to-part learning could also benefit other aspects of development. Infants’ initial poor 
visual acuity, which prevents them from perceiving visual details, has been proposed to facilitate broader spatial 
analysis beneficial for face  processing48.

Note that we deliberately designed our experiment to be a non-linguistic task. The memory game is one 
that appears unrelated to language. The sequences have no similarity to language, and the task was not framed 
as one which required participants to learn about properties of a set of behaviours. Moreover, both the whole 
sequences and the emerging parts do not have meaning. Nevertheless, system-wide statistical structure emerges 
that is strikingly similar to that found in languages. This suggests that structure in language may similarly arise 
via cultural evolution through a highly general process of iterated sequence learning, rather than learning biases 
that are specifically adapted to language. We expect to see segmentable sequences that have a skewed distribution 
wherever those sequences are transmitted via a similar cultural process by learners who start by learning wholes 
and then discover parts within them. For example, since music is just such a culturally transmitted behaviour, 
then we would expect to observe Zipfian distributions here as well. Indeed, there is evidence that this is the case. 
The distribution of various elements of music, among them pitch, melodic intervals, and harmonic consonance, 
shows a very good fit to a Zipfian distribution (e.g.,49). Song is also a culturally transmitted behaviour, and one 
that lends itself to whole-to-part learning since songs are often learned and understood as wholes. Here also, the 
distribution of melodic and rhythmic elements in song worldwide follows a power-law  distribution50.

Looking further afield, we can ask whether there are similarly skewed distributions in the communication 
systems of other species. If learnability is both a cause and an effect of skewed distributions, we may expect them 
to appear in culturally transmitted systems, especially when those systems are made up of parts and wholes. 
We can think of several species whose communication systems have these properties. For example, dolphins, 
whales, and songbirds. Interestingly, the whistle repertoires of adult bottlenose dolphins seem to follow a power-
law distribution (Ref.51 but  see52), as do the syllables in the song repertoires of spectacled warblers (a species of 
 songbird53). Elements of humpback whale song have also been shown to have a highly skewed  distribution54. 
These findings are suggestive of a similar process of structure creation operating in species other than humans. 
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We propose that future work should look specifically at whether the facilitative effects of skewed distributions 
is found in non-human animals.

Finally, our work brings together distinct research traditions in cultural evolution, statistical learning, devel-
opmental psychology, and linguistics. We have shown how these may be usefully combined to provide an experi-
mental paradigm for understanding the origins of core properties of human language. This would not have been 
possible without combining techniques from different areas—for example, iterated learning from the field of 
cultural evolution, and analysing transitional probabilities from the field of statistical learning. We believe this 
demonstrates the need for interdisciplinarity in building an empirically grounded theory of the origins and 
evolution of language.

Data availability
The full dataset and code for recreating all the figures and statistical analyses in this paper is available at: https:// 
github. com/ smkir by/ cultu ral_ evolu tion_ of_ stati stical_ struc ture
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