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Abstract 

One of the striking commonalities between languages is the way word frequencies are distributed. 
Across languages, word frequencies follow a Zipfian distribution, showing a power law relation 
between a word's frequency and its rank (Zipf, 1949). Intuitively, this means that languages have 
relatively few high-frequency words and many low-frequency ones. While studied extensively, little 
work has explored the learnability consequences of the greater predictability of words in such 
distributions. Here, we propose such distributions confer a learnability advantage for word 
segmentation, a foundational aspect of language acquisition. We capture the greater predictability 
of words using the information-theoretic notion of efficiency, which tells us how predictable a 
distribution is relative to a uniform one. We first use corpus analyses to show that child-directed 
speech is similarly predictable across fifteen different languages. We then experimentally 
investigate the impact of distribution predictability on children and adults. We show that word 
segmentation is uniquely facilitated at the predictability levels found in language, compared both 
with uniform distributions and with skewed distributions that are less predictable than those of 
natural language. We further show that distribution predictability impacts learning more than 
distribution shape, and that learning is not improved further in distributions more predictable than 
natural language. These novel findings illustrate learners' sensitivity to the overall predictability of 
the linguistic environment; suggest that the predictability levels found in language provide an 
optimal environment for learning; and point to the possible role of cognitive pressures in the 
emergence and propensity of such distributions in language.  
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Significance Statement 

While the world’s languages differ in many respects, they share certain commonalities: these can 
provide crucial insight on our shared cognition and how it impacts language structure. We offer a 
novel learnability perspective on one of the striking commonalities between languages: the Zipfian 
distribution of word frequencies. We show that languages have similarly predictable distributions, 
and that these predictability levels are uniquely facilitative for word segmentation in children and 
adults. We explain their lower and upper bounds as a trade-off between the competing pressures 
of learnability and expressivity. These findings have far-reaching empirical and theoretical 
implications, illustrating learners’ sensitivity to distribution predictability and pointing to role of 
cognitive biases in the recurrence of such skewed distributions in language.   

 
Main Text 
 
Introduction 
 

Over 6,500 different languages are spoken in the world today. These languages vary along many 

dimensions, but they also share certain similarities. These similarities can provide a window onto 

our shared cognition and the way it impacts language structure. One of the striking commonalities 

between languages has to do with the way word frequencies are distributed. Across languages, 

the frequency of words follows a Zipfian distribution, showing a power law relation between a word's 

frequency and its rank (1, 2, see Equation 1*). Intuitively, this reflects the fact that languages have 

relatively few high frequency words and many low frequency ones, and that the decrease in 

frequency is not linear: the most frequent word is twice as frequent as the second most frequent 

word and so on. This pattern was first noted by the American linguist Zipf in the 1930’s (1), and is 

often called Zipf’s law. Zipfian, or near-Zipfian (2) distributions are repeatedly found across 

languages, for different parts of speech (including nouns, verbs and adjectives). 

Equation 1:  𝑓(𝑟) ∝
1

(𝑟+ 𝛽)𝛼   

There are many different explanations for the origin of Zipfian distributions in language, with 

ongoing controversy about the significance of this law and whether it tells us something 

fundamental about language. On the one hand, such distributions are found across the physical 

                                                           
* The formula for Zipfian distributions, as extended by Mandelbrot (40), appears in Equation 1. It shows the 

relation between word's frequency - f(r) and its rank - r, with two constants that determine the shape of the 
distribution: α sets the steepness of the curve, and β introduces a skew which enables a better fit to natural 
language (1, 2). 
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world, where they are thought to reflect general mathematical principles not unique to language 

(e.g., scale-invariance (3)). However, their recurrence in language - a human creation - may 

nevertheless reflect foundational properties of language and/or human communication. While there 

is no agreed account of their source, their presence has been argued to be a form of optimal coding 

(4), and to create an optimal trade-off between speaker and listener effort (5).  

Interestingly, less work has examined Zipfian distributions from a learnability perspective. 

Independent of their source, the presence and propensity of Zipfian distributions in language may 

have consequences for learning because of their greater predictability: Words are more predictable 

in Zipfian distributions than in less skewed distributions. Intuitively, guessing the next word is easier 

in a skewed distribution where words differ in frequency compared to a uniform distribution where 

all words appear equally often. This increased predictability could provide a better environment for 

learning by making it easier to learn the high frequency elements and use them as stepping stones 

for subsequent learning. Importantly, despite their more limited vocabulary, word frequencies in 

speech directed to infants and young children (child-directed speech) also follow a Zipfian 

distribution (6). The objects that infants see also have a skewed distribution, with few objects 

appearing very often and many objects appearing infrequently (7). That is, from early on, both the 

words children hear and the objects they see are skewed in a certain way.  

Such skewed distributions may be particularly helpful for segmenting words, a crucial first 

step in breaking into language: High frequency words could serve as anchors for segmenting less 

frequent ones, as seen in infants’ use of their own name to segment adjacent words (8). 

Interestingly, the skewed nature of children’s input is not reflected in lab-based investigations of 

word segmentation: While studied extensively using artificial language learning paradigms (see (9) 

for a review), almost all such investigations expose learners to uniform distributions, where all 

words appear equally often. Such uniform distributions are less predictable than the ones children 

are naturally exposed to: using them may underestimate learning and overlook learners’ sensitivity 

to the overall predictability of the language. Very few studies have examined the impact of skewed 

distributions on learning. Only one previous study asked whether word segmentation is facilitated 

in a Zipfian distribution compared to a uniform one (10). Using a standard forced-choice task, and 

an online measure of segmentation (where participants had to mark word boundaries on a 

sequence of written syllables, a paradigm developed by Frank et al. 2010 (11)), they examined 

performance across varying lexicon sizes in the two distributions. They found contextual facilitation 

effects in the Zipfian distribution, but no overall advantage: Performance was not better overall in 

the Zipfian condition, but words were segmented more accurately when they appeared next to more 

frequent words. That is, higher frequency words in the Zipfian condition served as an aid for the 

online segmentation of lower frequency words. While these findings highlight a potentially 

facilitative aspect of Zipfian distributions (contextual facilitation), they provide limited evidence for 
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a general learnability advantage in such distributions. For starters, accuracy was not significantly 

higher in the Zipfian condition in either measure (forced-choice or online segmentation). Moreover, 

accuracy measures were calculated over all the words in the Zipfian distribution, including the most 

frequent one: we do not know how well participants fared on the lower frequency words, which 

serve as the crucial comparison. The highest frequency word in the Zipfian condition is expected 

to be learned better because of its’ higher token frequency (relative to the words in the uniform 

condition). However, if Zipfian distributions confer a learnability advantage, it should be present for 

the lower frequency words as well. An additional study examined the impact of Zipfian distributions 

on word learning using a cross-situational learning paradigm (6), where participants learn novel 

object-label associations by aggregating statistics over trials (12). Participants showed better 

learning of frequency-matched items in the Zipfian distribution compared to the uniform one, but 

this effect disappeared when there was no ambiguity (when each label was only presented 

simultaneously with one object). Based on this, Zipfian distributions were predicted to improve 

learning only in ambiguous tasks (where there are multiple options for segmentation or object-label 

mapping).  

Taken together, these studies suggest that learning is impacted by distribution type, but 

they do not provide compelling evidence for a general learnability advantage in Zipfian distributions. 

More importantly, they do not tell us what about Zipfian distributions impacts learning: One 

intriguing possibility is that it is not the particular shape of the distribution that impacts learning, but 

the greater predictability it confers relative to less skewed distributions. That is, the relevant factor 

for learning may be distribution predictability rather than distribution shape, with certain 

predictability levels leading to improved learning. Such individual biases, if they exist, could be 

amplified over time to impact language structure (13), creating a cognitive pressure to maintain 

similarly predictable distributions. Here, we offer a novel theoretical account for why Zipfian 

distributions facilitate learning that makes concrete predictions about when learning will be 

facilitated and when it will not. In a nutshell, we propose that languages have similar distribution 

predictability values; that these predictability values enhance learning; and that their recurrence in 

language reflects a trade-off between learnability pressures on the one hand, and expressivity 

pressures on the other.  

 

Research overview   

In the present paper, we investigate the impact of distribution predictability on word segmentation 

to test the novel proposal that Zipfian distributions are facilitative because of their greater 

predictability. We test three theoretical predictions: (1) that different languages have similarly 

predictable distributions, (2) that learners are sensitive to distribution predictability and show 

enhanced learning at the predictability levels found in language, and (3) that the facilitation is driven 
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by distribution predictability, and not distribution shape. That is, distributions that are similarly 

predictable should be similarly facilitative, even if they differ in their shape, but not the other way 

around. To test these predictions, we draw on information theory and its’ recent applications to 

language (see (14) for a recent review). We operationalize the greater predictability of words in 

Zipfian distributions using the information-theoretic notion of efficiency (Equation 2), which is 

calculated using Shannon’s entropy (15). Entropy quantifies the information content of a random 

variable (the amount of uncertainty) and has been shown to impact a range of linguistic 

phenomena, from the structure of the lexicon (16) and the distribution of color terms in the worlds’ 

languages (17, 18), through historical sound change (19), to online processing (20–22). Efficiency 

– which is the ratio between the observed unigram entropy and unigram entropy under a uniform 

distribution (see Equation 2) - tells us how predictable a distribution is relative to a uniform one with 

the same set size, allowing us to normalize entropy by set size. This is crucial if we want to compare 

distribution predictability across languages whose lexicon size may differ, and across different 

experimental paradigms.  

In the first study, we provide a systematic characterization of the efficiency of word 

distributions in child-directed speech across fifteen languages (from eight language families) and 

show that languages are similarly predictable: they deviate from the uniform to a similar extent. In 

study 2, we test the effect of efficiency on learning in adults and children using a classic artificial 

word segmentation paradigm (23). We manipulate efficiency by changing the frequency distribution 

to make some words more frequent than others. By comparing performance on languages with 

varying levels of efficiency, we show that word segmentation is uniquely facilitated in language-like 

predictability in both children and adults: accuracy is higher in language-like efficiency compared 

both to a uniform distribution and to a skewed distribution less predictable than found in language. 

In Study 3, we further investigate the beneficial effect of language-like efficiency on segmentation 

in two ways. In Study 3a we test the prediction that distribution predictability matters more than 

distribution shape by comparing performance on distributions with similar efficiency values, but a 

different shape: a Zipfian distribution - where word frequency followed a power law - and a binary 

distribution - where one word was more frequent, and the rest had the same low frequency. In study 

3b, we look at an efficiency value lower than that of natural language (an even more predictable 

distribution), to see whether it will lead to increased learning compared to language-like efficiency. 

We find improved performance in language-like efficiency, regardless of distribution shape, and no 

added facilitation when efficiency was reduced to be lower than language. These findings point to 

the role of additional pressures, like expressivity, in determining the consistent predictability levels 

and distribution shape found in natural languages.  

Study 1: Word distributions are similarly predictable across languages in child-directed 

speech 
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We begin by asking whether word distributions in child-directed speech are similarly predictable 

(relative to a uniform distribution) across different languages. A recent corpus study of adult speech 

provides some support for this prediction (23). The authors examined unigram entropy and entropy 

rates across 1,000 languages using three parallel corpora (Bible translations, translations of 

European Parliament discussions, and translations of the Human Rights Declaration). They found 

similar and narrow unigram entropy values across different languages: Despite structural and 

morphological differences, words carry a similar amount of information across languages. While 

consistent with our prediction that languages have similar distribution predictability, these findings 

are limited in several important respects. First, the study used parallel corpora (translations of the 

same text) to make the samples more comparable. This strength is also a limitation: the similarity 

between the languages could have been driven in part by the identical content conveyed. Second, 

most of the data comes from written, rather than spoken language, and may not reflect the 

information theoretic properties of day-to-day spoken interaction. Finally, and most importantly from 

our perspective, the study analyses adult speech, which differs in many respects from the linguistic 

environment children are exposed to: The existing findings do not reflect distribution predictability 

in speech directed to young learners.  

To address these limitations, and to generate a measure of distribution predictability that 

normalizes for set-size, we calculated and compared the efficiency values of words in child-directed 

speech in 15 different languages from eight language families (English, German, French, 

Japanese, Dutch, Polish, Spanish, Swedish, Portuguese, Hebrew, Mandarin, Estonian, Danish, 

Catalan and Norwegian). We focus on child-directed speech because this is what infants and young 

children actually hear. The data was taken from multiple corpora from the CHILDES database (24) 

(Table 1). The criterion for inclusion was that the corpus contained at least 150,000 tokens. This 

was done to increase the reliability of the entropy estimates and the efficiency values based on 

them. Previous work has shown that entropy calculations are reliable with a corpus of 50,000 

tokens and above (25), which means that all our samples are above the required lower bound. We 

calculated efficiency for each corpus using Equation 2, which calculates the ratio between the 

observed unigram entropy and the maximal entropy. In equation 2, N is the number of types and 

p(xi) is the probability of the i'th word.  

Equation 2:  𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦
=  

∑ 𝑝(𝑥𝑖)∗log 2(𝑝(𝑥𝑖))𝑁
𝑖=1

𝑙𝑜𝑔2𝑁
 

Theoretically, efficiency, like entropy, captures the overall predictability of the linguistic 

environment. However, efficiency allows us to normalize entropy by set size and compare 

predictability across corpora and experimental paradigms. This is crucial since the existing child-

directed corpora vary in size across languages. In addition, efficiency is a bounded measure 



 

 

7 

 

(ranging from zero to one) with a fixed comparison point: it tells us how predictable a distribution is 

relative to a uniform baseline. Intuitively, it is easier to interpret than entropy, which is unbounded 

in nature. This measure has been used in the past to study human cognition, for example, for 

normalizing the entropy of neuronal firing rate across brain regions (26).  

Even though the corpora varied both in overall size (number of tokens) and in the size of 

the lexicon (number of types), efficiency values spanned a relatively narrow range: all values were 

between 0.59 and 0.7 (average 0.64, SD=0.03, Table 1). To further probe the stability of these 

values, we repeated the calculation, but this time divided each of the five larger corpora (American 

English, British English, German, French and Japanese) into bins containing 500,000 words (see 

Materials and Methods). The efficiency values for the smaller bins were still in the same range: for 

the 36 samples we now have, the average efficiency value was 0.67 (SD=0.01), with a range of 

0.65-0.69 (Table S1). That is, efficiency values span a narrow range across languages†. 

Interestingly, these values are lower than those of the artificial languages used in Kurumada et al. 

(2013, mean=0.84, SD=0.03, range: 0.867-0.808), raising the possibility that those languages were 

not learned better in the Zipfian distribution because they had less predictable distributions‡.   

In the next two studies, we test the impact of efficiency values and distribution shape using 

the classic word segmentation paradigm developed by Saffran et al. (23). In this paradigm, learners 

are exposed to recurrent tri-syllabic 'words' where the only cue to word boundary is the higher 

transitional probabilities between syllables within words (compared to across word boundaries). 

While used extensively, almost all existing studies expose learners to uniform distributions, where 

each word appears equally often.  

 

Study 2: Language-like efficiency facilitates word segmentation in adults and children  

We ask three questions in this study: (1) Is word segmentation improved in more predictable 

distributions? (2) Is the facilitation greater at the predictability values found in natural language?  

And (3) will we see a similar effect in children? To ask these questions, we examine the impact of 

efficiency on learners’ ability to segment a four-word unsegmented artificial language. We 

manipulated efficiency by varying the frequency of the four words to create a skewed distribution 

with varying efficiency values, where one word is more frequent than the other three. We started 

with this binary distribution (which differs from the Zipfian one found in language, see Study 3), 

                                                           
† To ensure that the relatively stable and narrow deviation from the uniform we found is not dependent on the 

particular measure we used (efficiency), we also calculated it using Kullback–Leibler divergence (DKL) - a 
more commonly used measure for estimating the distance between two distributions – and found similar 
results (Table S2). 
‡ We calculated the efficiency of the artificial languages in Kurumada et. al (2013) according to the word 

frequencies provided in Figure 2 (page 443) of their article,  
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because it allows us to better examine the impact of efficiency on learning low-frequency words 

without having to control for frequency effects (since they all had the same frequency). We 

compared performance at three efficiency levels, based on the efficiency values we found in natural 

language: (1) Maximal efficiency: a uniform distribution where each of the four words appear 

equally often, as is the norm in this paradigm (efficiency=1). This is the least predictable distribution; 

(2) Reduced efficiency: a skewed distribution more predictable than the uniform, but less 

predictable than natural language, with higher efficiency than what we found in natural language 

(efficiency=0.85). This efficiency value is similar to that of the languages used in Kurumada et al. 

(2013), where no overall advantage was found in the Zipfian distribution; and (3) Language-like 

efficiency: a skewed distribution with efficiency values similar to those found in natural language, 

(efficiency=0.54, see Table 2 for full details). By comparing performance across the three levels, 

we can ask whether any increase in predictability leads to improved learning, or whether 

segmentation is more facilitated in language-like efficiency.  

To further assess learning of the low frequency words, which are the crucial test for the 

impact of efficiency on learning, we added a second uniform condition ("uniform-short") where each 

of the words appeared only 19 times, as often as the lower frequency words in the reduced-

efficiency condition. This additional condition allowed us to compare learning of words that appear 

the same number of times at different efficiency levels. Following exposure, participants in all 

conditions completed 16 two-alternative forced-choice trials where they heard a real triplet and a 

foil and had to say which was a real word in the language. If any increase in predictability improves 

learning, then performance should be similarly improved in the two skewed conditions compared 

to the uniform one. If, alternatively, learning is uniquely facilitated at certain predictability levels, 

then performance should be better in the language-like condition compared to the other two. We 

used the same conditions and procedure with adults (Study 2a) and children (Study 2b) to see if 

they are similarly impacted by distribution predictability.  

Study 2a: Adults 

Participants (N=142, mean age 24;0, 108 females) were randomly allocated to one of the four 

conditions (Nuniform=31; Nreduced=41; Nlanguage-like=40; Nuniform-short=30). In the two skewed distributions, 

there were four different exposure streams, each with a different word serving as the frequent one 

(this did not impact the results, see supplementary information (SI) of Study 2a, so we collapsed 

over the four exposure streams in the analyses). As predicted, word segmentation was better in 

language-like efficiency compared to both the uniform and the reduced-efficiency conditions 

(Mlangauge-like=81.66%, SD=15.9%; Mredueced=67.5%, SD=15.9%; Muniform=65.7%, SD=12.5%, Fig. 

1A). A mixed-effect model comparing these three conditions (with the uniform one as the baseline) 

showed that segmentation was significantly improved in language-like efficiency (β=1.27, SE=0.23, 

p<0.001), but not in the reduced efficiency condition (β=0.19, SE=0.2, p>0.1, Fig. 1A, Table S4, SI 
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of Study 2a). Despite being more predictable, reduced-efficiency did not facilitate learning relative 

to the uniform condition. To further explore the lack of difference between the uniform and the 

reduced efficiency conditions, we conducted a Bayes factor analysis on a mixed-effect model 

comparing the two conditions, using the 'BayesFactor' package in R, (for more details: SI of Study 

2a). We found strong support for the null hypothesis (no difference in accuracy, 

BayesFactor=18.28), strengthening the claim that the effect of efficiency is discontinuous. For 

comparison, when performing a similar analysis comparing the language-like and the uniform 

conditions, we found very strong support for the alternative hypothesis, stating there is a difference 

in accuracy (BayesFactor=9,643). In an additional mixed-effect model, we asked whether 

language-like efficiency resulted in better performance than reduced-efficiency, and it did (β=1.12, 

SE=0.23, p<0.001, Fig. 1C, Table S5). This comparison also shows that frequency affects 

performance in a relative rather than an absolute way: Raw frequency predicted performance within 

conditions, but not across conditions. To give an example, a word that appeared only 9 times (the 

low frequency word in the language-like condition) was learned numerically better than a word 

appearing 71 times (the frequent word in the reduced condition,  see Fig. 1C). 

Importantly, the effect was not driven only by performance on the higher frequency word. 

We used a mixed-effect model to compare performance on the lower frequency words in the two 

skewed conditions to the words in the shorter-uniform condition (which had similar frequency). Here 

also, accuracy was better in language-like efficiency compared to the shorter-uniform condition 

(Mlanguage-like-infrequent=78.8% vs. Mshorter-uniform=65.0%), despite the words appearing half the number 

of times (9 vs. 19 times, β=0.78, SE=0.22, p<0.001). There was no such facilitation in the reduced 

efficiency condition (Mreduced-infrequent=64.8%), even though each low frequency word appeared more 

often than in the language-like condition (19 times, as in the uniform-short condition, β= -0.002, 

SE=0.21, p=0.99, see Fig. 1B, Table S6). A Bayes factor analysis showed support for the null 

hypothesis (BayesFactor=33.7). The opposite pattern was found when comparing the language-

like and the uniform-short conditions (support for the alternative hypothesis, BayesFactor=705.34).  

The increased facilitation in language-like efficiency could not have been driven only by an 

anchoring effect (where the frequent word is learned early on and used to segment the lower 

frequency words (10)), since that should have led to improvement also in the reduced efficiency 

condition. The reduced efficiency condition still provided ample opportunity for anchoring: the low 

frequency words appeared next to the frequent word often (12-15 times, between 63-78% of the 

time, a proportion similar to that found in Kurumada et al. (10), see Table S3). Moreover, the 

frequent word was learned well allowing it to be an anchor. However, despite providing more 

anchoring opportunities than the uniform distribution (which provided no anchoring since all words 

were equally frequent), accuracy was not higher in the reduced-efficiency condition. 

Study 2b: Children  
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Children (N=147, mean age=10;1 years; range: 9;0 to 12;0 years, 68 females) completed the same 

four conditions (Nuniform=30; Nreduced=47; Nlanguage-like=40; Nuniform-short=30). Like adults, children 

showed better learning in language-like efficiency: they were more accurate in this condition 

compared to both the reduced efficiency and the uniform conditions (Mlangauge-like=66.1%, 

SD=16.6%; Muniform=60.2%, SD=11.5%; Mreduced=58.0%, SD=13.8%; Fig. 2A). A mixed-effect model 

comparing the three conditions (with the uniform as the baseline) showed that segmentation was 

significantly improved in language-like efficiency relative to the uniform condition (β=0.53, SE=0.17, 

p<0.01). No such facilitation was found in the reduced efficiency condition (β= -0.01, SE=0.15, 

p>0.9, Fig. 2A, Table S8, SI for Study 2b). A Bayes factor analysis showed strong support for the 

null hypothesis (no difference in accuracy between the reduced and the uniform conditions, 

BayesFactor=28.44). A separate mixed-effect model, showed that language-like efficiency led to 

significantly better performance than reduced efficiency (β=0.44, SE=0.16, p<0.01, Fig. 2C, Table 

S9). Together, these results strengthen the finding that the effect of distribution predictability on 

learning is discontinuous.  

The facilitation at language-like efficiency is also seen when looking only at the low 

frequency words. Children did not manage to learn words appearing 19 times in the reduced 

efficiency condition (Mreduced-infrequent=52.5%, SD=16.0%; not higher than chance, t(46)=1.06, p>0.1), 

and learned them relatively poorly in the uniform-short condition (Muniform-short=54.17%, SD=12.5%; 

t(29)=1.8, p=0.07). However, they managed to learn words appearing half the number of times 

(only nine times) when presented in language-like efficiency (Mlanguage-like-infrequent=62.5%, 

SD=17.3%; t(39)=4.57, p<0.001 compared to chance). A mixed-effect model comparing the low 

frequency words in the language-like condition to words in the shorter-uniform condition confirmed 

that segmentation was better in the language-like condition, despite the lower frequency (9 vs. 19 

times, β=0.34, SE=0.15, p<0.05; Fig. 2B, Table S10). That is, children’s word segmentation is also 

facilitated in language-like efficiency.  

Study 3: Further investigation of the effect of efficiency on word segmentation 

Study 2 showed that word segmentation is facilitated in children and adults at language-like 

efficiency. Here, we address two open questions. The first is whether this facilitation is driven by 

distribution shape or distribution predictability. In study 2, efficiency was reduced by making one 

word more frequent than the other three (hereon, a binary distribution). This design allowed us to 

better control for the effect of word frequency (since all the low frequency words within each 

condition appeared an equal number of times). However, this distribution does not resemble the 

Zipfian one found in natural language. It is possible that the effect we found is limited to the specific 

distribution used. In Study 3a, we use the same word segmentation paradigm to compare adults’ 

performance on two skewed distributions (binary vs. Zipfian) in two efficiency levels (reduced vs. 

language-like). We predict similar performance in languages that have the same efficiency level, 
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but differ in shape (and not the other way around): That is, we expect better performance in the two 

language-like conditions, regardless of distribution shape. This study also serves to replicate the 

greater facilitative effect of language-like efficiency compared to reduced efficiency (we will sample 

three additional efficiency values, one higher than language, and two in the language-like range). 

The second question is what happens at efficiency values that are lower than the ones found in 

natural languages? Does increasing predictability more lead to even better learning? If so, this 

would suggest that the absence of lower efficiency values in natural language is not driven by 

learnability constrains, but by other pressures, such as expressivity (e.g., in languages with lower 

efficiency a greater mass of the distribution will be taken up by fewer words, see discussion). If, 

however, learning is not improved more at lower efficiency values, this would suggest that learning 

is optimal at language-like efficiency: learnability pressures on their own may explain the range of 

values found in language. In Study 3b, we explore this by comparing performance on a language 

with lower efficiency to the language-like condition.  

 

Study 3a: Distribution predictability vs. distribution shape 

To test the impact of distribution shape on segmentation, we created a two-by-two array, with 

efficiency (reduced versus language-like) and distribution shape (binary versus Zipfian) as the 

variables. In the binary conditions, one word was more frequent, while the other three had the same 

low frequency (as in Study 2). In the Zipfian conditions, word frequency followed a power law 

distribution (see Equation 1, with higher exponents for lower efficiency values). We compared the 

following four conditions: (1) a binary condition with reduced efficiency (the same condition as in 

Study 2a, efficiency =0.85); (2) a Zipfian condition with reduced efficiency (efficiency=0.83); (3) a 

binary condition with language-like efficiency (efficiency=0.65); and (4) a Zipfian condition with 

language-like efficiency (efficiency=0.61, see Table 3 for full details). We used the existing sample 

from Study 2a for condition 1, but collected new data for the three other conditions. We collected a 

new sample for the binary-language-like condition (even though we had a similar condition in Study 

2a) for two reasons: to ensure a similar difference in efficiency between the two distribution shapes, 

and to show that the facilitative effect we found is replicated in an additional sample.  

120 additional adult participants completed the three conditions (for all four conditions: 

N=161, age=23;7; 115 females). Figure 3A shows segmentation scores in all conditions for the 

most frequent word and the lower frequency words separately. Since the most frequent word is 

expected to be learned well in all conditions and might inflate the total segmentation score, it is 

important to look at success on low frequency words as well. As predicted, accuracy was higher in 

the two language-like conditions compared to the reduced conditions. This difference is found when 

looking at total segmentation score (Mlanguage-like-binary=78.4%, SD=16.5%; Mlanguage-like-Zipfian=78.4%, 

SD=16.1%; Mintemediate-Zipfian=74.7%, SD=12.8%; Mreduced-binary=67.5%, SD=15.9%), and becomes 
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clearer when looking at performance on the low frequency words : Participants showed better 

learning of the low frequency words in the language-like conditions compared to the reduced 

efficiency ones (Mlanguage-like-binary-infrequent=77.1%, SD=19.1%; Mlanguage-like-Zipfian-infrequent=76.4%, 

SD=18.9%; Mreduced-Zipfian-infrequent=69.8%, SD=16.5%; Mreduced-binary-infrequent=64.8, SD=17.9%). 

We used a mixed-effect model with frequency (frequent vs. infrequent, binary coded, see 

details in SI for Study 3a and Table S12), efficiency level and distribution type as variables, along 

with the triple interaction between them to see whether efficiency affected segmentation differently 

for the two distribution shapes, and whether the effect of frequency differed across efficiency levels 

and distribution types. As predicted, performance was better at language-like efficiency (β=0.62, 

SE=0.15, p<0.001), but the effect of distribution shape, and the interaction between them were not 

significant (β=0.23, SE=0.14, p=0.096; β= -0.27, SE=0.221 p>0.1, respectively). That is, the effect 

of efficiency is greater than that of distribution shape. The interaction between frequency and 

distribution shape was significant: the frequent word in the Zipfian condition was learned better than 

expected compared to the binary condition (β=0.78, SE=0.35, p<0.05), which could suggest an 

impact of distribution shape on learning of the most frequent word. However, further analyses 

showed that this effect was only found in the reduced-efficiency condition (as can be seen in Fig. 

3A and in the SI for Study 3a), suggesting it is not a robust one. These results support the facilitative 

effect of language-like efficiency (for two additional efficiency values), and indicate that in this 

experimental paradigm, distribution predictability impacts word segmentation, but not distribution 

shape. 

As in Study 2a, anchoring cannot explain the full pattern of results, and does not provide 

an alternative explanation to efficiency. Anchoring predicts that the low frequency words in the two 

Zipfian conditions (reduced efficiency vs. language-like) would be learned equally well. The 

frequent word could serve as an anchor in both conditions (it was learned very well), and the lower 

frequency words appeared next to it a similar number of times (10.66 times on average in the 

Zipfian-reduced and 10.33 in the Zipfian-language-like, Table S3). Moreover, the low frequency 

words in the Zipfian-reduced condition appeared more times on average than in the Zipfian-

language-like condition (19.3 versus 11.67 respectively), providing more opportunities to learn 

them. However, the low frequency words were learned significantly worse in the reduced condition 

compared to the language-like one (69.8% versus 76.5%, in mixed effect model reported in Table 

S13 in the SI of Study 3a:  β= 0.35, SE=0.149 p<0.05), a pattern predicted by efficiency, but not 

anchoring. 

 

Study 3b: What happens in a lower efficiency value?  

Here, we wanted to see how a further reduction in efficiency would affect segmentation. We created 

a new binary language that was more predictable than natural language (efficiency=0.4, see Table 
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4) and compared it to the binary language-like condition from Study 3a. The new language had the 

same total exposure as the previous ones (N=128 tokens). We chose this value so that the change 

in efficiency is similar to the one between the language-like and the reduced efficiency conditions 

(binary-reduced=0.85, binary-language-like=0.65, binary-low=0.4). We did not use an even lower 

efficiency value since we wanted to have enough repetitions of the low frequency words. 40 

additional adult participants completed this condition (age=23;1, 28 females): they showed 

accuracy similar to that found in the language-like condition (Mlow=83.9%, SD=15.8%). A mixed 

effect model with frequency (frequent vs. infrequent, binary coded), efficiency level and the 

interaction between them showed no difference between these conditions (β=0.3, SE=0.3 p>0.1): 

learning was not better in the lower-efficiency condition compared to the language-like one. The 

interaction between frequency and condition was significant, with the frequent word learned better 

than expected in the low efficiency condition (β=1.1, SE=0.44, p<0.05, Table S14). We do not have 

an explanation for this effect. Importantly, learning of the low frequency words was also not better 

in the low efficiency condition (Mlow-infrequent=80.6%, SD=19.4%). A separate mixed-effect model 

showed no increase in performance compared to the language-like condition (β=0.28, SE=0.16, 

p>0.1, Table S15). That is, reducing efficiency to a level lower than found in language did not result 

in an additional increase in accuracy. We discuss the implications of this below.  

Discussion  

In the current paper, we set out to explore the possible learnability consequences of Zipfian 

distributions in language: while much work has debated their origin (3, 5), less research has 

examined their impact on learning. Given their propensity in language, do they provide a beneficial, 

or even optimal, environment for learners? Specifically, we ask whether the greater predictability 

of words in such distributions can facilitate word segmentation – a critical first step in language 

acquisition. This prediction receives some support from a previous study showing that Zipfian 

distributions provide more contextual facilitation for word segmentation compared to uniform ones 

(10). However, this study did not find an overall advantage for the Zipfian distribution, and did not 

provide separate analyses of how low frequency words were learned. Here, we go beyond existing 

findings to provide a novel theoretical account about when (and why) Zipfian distributions facilitate 

word segmentation. We quantify distribution predictability using the information-theoretic measure 

of efficiency, which captures how predictable a distribution is relative to a uniform one and provides 

a way to normalize entropy by set size. In the first study, we show that distribution predictability has 

very similar values in child-directed speech across fifteen different languages. Studies 2 and 3 use 

a classic artificial word segmentation paradigm to test the impact of distribution predictability and 

shape on learning by shifting the distribution away from the uniform one used in most SL studies. 

Study 2 shows that word segmentation is uniquely facilitated in language-like efficiency in both 

children and adults. Study 3 shows that the facilitation is driven by distribution predictability 
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(efficiency) and not distribution shape, and that performance is not improved more when efficiency 

is lower than the lower bound found in natural language. That is, accuracy was higher in language-

like efficiency compared both to a uniform distribution, and to skewed distributions with efficiency 

values higher than those found in natural language (see Fig. S1). Importantly, these findings cannot 

be explained by anchoring (where the frequent word is used to segment the lower frequency ones): 

while anchoring undoubtedly plays a role in word segmentation, it cannot explain the full range of 

results. The impact of frequency was also modulated by efficiency: While the frequent word was 

learned better than the low frequency words in all conditions, words in language-like efficiency were 

learned better than words appearing more times in reduced efficiency. That is, frequency affected 

performance in a relative, rather than an absolute way.  

Our findings show that learners are sensitive to the overall predictability of the linguistic 

environment, and that this sensitivity does not follow a continuous trajectory (see Fig. S1). Despite 

being more predictable than a uniform distribution, word segmentation was not improved when 

efficiency values were higher than those found in natural languages. It seems that there is a minimal 

increase in predictability that has to happen before learning is facilitated: the distribution needs to 

be skewed enough. This could explain the lack of overall advantage when word segmentation was 

previously assessed in a Zipfian distribution that did not have language-like efficiency (10): in this 

previous study, the Zipfian distribution was not predictable enough (it had reduced efficiency and 

not language-like efficiency), and consequently did not enhance learning. A similarly discontinuous 

effect is found in the animal learning literature where there are stronger neural responses to highly 

deviant (infrequent) stimuli (stimulus-specific adaptation (27)). While not identical, this literature 

highlights the benefit that low frequency items can receive in certain distributional environments. 

The lack of improvement in the reduced efficiency conditions also challenges a recent proposal 

suggesting that Zipfian distributions are beneficial only in ambiguous learning environments. A 

recent study found better cross-situational learning from a Zipfian distribution, but only when the 

task contained ambiguity (6): Learning was not improved in a Zipfian distribution when each object 

was only presented with one label. The authors propose that the facilitation stems from using the 

frequent word to reduce ambiguity quickly, and predict it will not be found in unambiguous learning 

settings (i.e., when learning already segmented object-label associations). However, since all our 

conditions involved ambiguity (there are many possible ways to segment the novel speech stream), 

such an explanation cannot explain the lack of facilitation in the reduced efficiency conditions. While 

ambiguity may play an important factor in how facilitative a skewed distribution is, it cannot explain 

the range of data explained by efficiency.   

Our findings also suggest that segmentation does not continue to improve when efficiency 

decreases more: Accuracy was not greater in a language with lower efficiency (more predictable) 

than found in language. One interpretation of this is that the predictability values found in language 
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are optimal for learning, so that increasing predictability more will not facilitate performance further. 

However, since the low frequency words in the low-efficiency condition appeared only six times 

(compared to nine or twelve in the language-like conditions), the smaller number of repetitions 

could have masked the effect of the lower efficiency. It is possible that increasing distribution 

predictability to levels higher than language can facilitate word segmentation under certain 

conditions. Importantly, the current study is only a first step in investigating the efficiency values 

that languages display and their impact on learning. More work is needed to track how changes in 

efficiency impact learning, systematically investigate whether the effect is indeed discontinuous, 

and ask how learning is impacted by lower efficiency values.  

Why do languages display a certain range of distribution predictability, as captured by 

similar efficiency values? One possibility is that learnability constraints alone drive both the lower 

and the upper bound of the efficiency range: Languages do not have higher (or lower) efficiency 

values because those are less optimal for word segmentation. However, in such a scenario, we 

would expect worse learning at lower efficiency levels, which is both unmotivated given the 

generally positive effect of increased predictability on learning (e.g., 29), and is unlike what we 

found in Study 3b. Alternatively, and more likely, the observed predictability values may reflect the 

impact of competing pressures on language structure (13, 29–31). Specifically, the narrow range 

of efficiency values may be shaped by two competing pressures: a learnability pressure on the one 

hand, and an expressivity pressure on the other. From a cognitive perspective, learners benefit 

from languages that are more predictable, creating a pressure for lower efficiency values. At the 

same time, languages with lower efficiency values are ineffectual from a communicative 

perspective. Having very low efficiency values would result in a language that is not expressive: 

such values can be obtained only if very few words take up a disproportionate part of the 

distribution. The noise present in any communication channel could create an additional need to 

push efficiency away from the two extremes (so they don’t accidently fall into the two ineffectual 

boundaries). The middle region of the curve keeps languages as far as possible from these too 

extremes, ensuring that they that are not too surprising or inadequate for communication. The idea 

that learnability and expressivity both impact language structure is not new (e.g., 25, 32). However, 

existing studies estimate expressivity (using corpus data), but do not measure (or test) learnability. 

Their claims are based on an empirical assessment of one pressure (expressivity), but not the other 

(learnability). Here, we focus on that second pressure: we quantify learnability (using efficiency) 

and experimentally test its’ effect on human learning. That is, we provide an empirical test of how 

(and when) it impacts learning. 

However, an open question remains: If the relevant factor is distribution predictability, then 

why do languages consistently have Zipfian distributions? Since there are many different 

distributions that could have the same efficiency values, this alone would not explain the recurrence 
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of Zipfian (or near-Zipfian) distributions in language. Several communicative and cognitive 

pressures may converge to make Zipfian distributions particularly advantageous for language 

learning and use. First, it is possible that for larger lexicon sizes, distribution shape will impact 

learning beyond the effect of distribution predictability.  One limitation of the current findings is that 

our conclusions are based on learning an artificial language with only four words, a long stretch 

from the large lexicons in natural language. With numerous words to learn, as in natural language, 

the graded difference in frequency, which is a hallmark of Zipfian distributions, could facilitate 

learning by making each higher frequency word an anchor for learning less frequent words. The 

high frequency words can serve as anchors to learn mid frequency words, while these mid 

frequency words can in turn help segment low frequency words. The graded difference in frequency 

may also be beneficial from a lexical access perspective - making each word more distinguishable 

from its’ lexical neighbors. Moreover, the Zipfian distribution - with its graded frequency and 

particular slope - may be optimal for maintaining the facilitative language-like predictability levels 

for a large number of samples and sample sizes: when words vary in frequency, we need to use 

words from different regions of the frequency distribution to form an utterance. This means that the 

contrast between high and low frequency remains even within an utterance, which could make the 

utterance itself easier to segment. That is, the particular shape of the Zipfian distribution may confer 

a unique learnability advantage with large enough lexicons, by making words more distinguishable 

and allowing for stable predictability values for varying samples and sample sizes. These cognitive 

benefits are joined by communicative pressures: such distributions are claimed to create an optimal 

trade-off between speaker and listener effort (33). We are currently investigating these possibilities 

using computational simulations, mathematical modelling, and expanded word segmentation 

paradigms.  

The improved segmentation we found in both children and adults also has implications for 

the statistical learning literature. Our results highlight the importance of using linguistic 

environments that resemble those of actual language, and the danger of experimental paradigms 

that strip away the multiple cues present in real-world learning environments. Using uniform 

distributions is useful for assessing the impact of one particular cue (e.g., transitional probabilities) 

on learning. However, presenting learners with environments that are less informative than natural 

language may limit our understanding of learning in the wild and lead us to underestimate learners’ 

abilities (34, 35). This is especially risky when asking questions about what can and cannot be 

learned, as is often the case in developmental research. For instance, from two uniform conditions 

alone, we could have concluded that children (at the tested age) cannot use TPs to segment novel 

words when they appear only 19 times. This conclusion is not warranted given their performance 

in the language-like condition where less frequent words were learned well. Manipulating 

distribution predictability could similarly impact learning in other domains that have been studied in 
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the lab. Language-like efficiency also seems to facilitates learning novel word-object associations 

(36), but its’ effect on learning grammatical relations has not yet been examined.  

We set out to assess the impact of distribution predictability and shape on language 

learning in children and adults. Our broader goal, however, is to study learning biases at the level 

of the individual as a way to understand both the consequences and the source of the kind of 

skewed word distributions found in language: Can individual learning biases explain the propensity 

of Zipfian (or near-Zipfian) distributions in language? This question is inspired by research 

highlighting the way individual biases can be amplified over time to impact language structure (13). 

Our experimental results suggest that certain efficiency levels are better for learning than others. If 

substantiated, such individual learning biases may in turn shape language structure over time, by 

creating or maintaining similarly skewed distributions§. This proposal makes several testable 

predictions. The first is that languages will maintain stable efficiency values over time, even as they 

change and even when new words are added. Such stable patterns have been reported for the 

transfer of information across languages (32), as well as for the ratio between word and sequence 

entropy (37). The second, and harder to test prediction, is that efficiency values become more 

language-like in the process of emergence, for example in the development of new sign languages. 

We are currently testing both predictions using historical and diachronic corpora as well as iterated 

learning paradigms to see whether the individual learning biases we saw in the lab can emerge 

through the process of cultural transmission.  

Conclusion 

In this paper, we investigated the possible learnability advantage of one of the most striking 

commonalities between languages: the way words are distributed. We characterize the 

predictability of word distributions in natural language corpora using the information-theoretic 

measure of efficiency, which tells us how predictable a distribution is relative to a uniform one. We 

find that similar distribution predictability across languages.  We then show that word segmentation 

is uniquely facilitated in language-like predictability for both children and adults. These findings 

illustrate the impact of a novel information-theoretical measure on learning; show that learners are 

sensitive to the structure of the environment as a whole; and point to distribution predictability as 

an important factor in learning. More importantly, the findings suggest that Zipfian distributions 

confer a learnability advantage, because of their predictability levels, and open up new directions 

in explaining their source.  

 
Materials and Methods 

                                                           
§
 As discussed above, it may be possible to derive their propensity from the combination of these individual biases, and 

other structural and communicative constraints (such that Zipfian distributions will emerge as a byproduct of interacting 
pressures). We are currently exploring this idea using mathematical and computational tools.   
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Study 1: Corpus Analyses  

We used all the available corpora for typically developing monolingual children in CHILDES (24) 

for the following languages: English, German, French, Japanese, Dutch, Polish, Spanish, Swedish, 

Portuguese, Hebrew, Mandarin, Estonian, Danish, Catalan and Norwegian. The data was taken 

from multiple child-parent dyads (over 110): we collapsed over the different dyads to create one 

larger corpus for each language. For each language, we counted the number of appearances of 

each word (defined by orthographic form) and calculated the unigram entropy for the observed 

frequency distribution. We call this the observed unigram entropy. We then calculated the maximal 

entropy for this set size, which is the unigram entropy under a uniform distribution for the same 

number of types (e.g., if the corpus had 1,000 distinct word forms, we assumed each appeared the 

same number of times). The last step was to calculate efficiency for each corpus: the ratio between 

the observed unigram entropy and the maximal unigram entropy (see Equation 1). As can be seen 

from Table 1, efficiency values are similar across languages and corpus size. 

Studies 2 and 3: Word Segmentation 

Participants 

All studies were approved by the IRB committee at the relevant university.  

Adult participants: 302 participants took part in study 2a and Study 3 together (mean age 23;8; 219 

females, 83 males). All were undergraduate students. All participants were native Hebrew speakers 

without learning or language disabilities. Adults read and signed a consent form prior to 

participating. They received 10 NIS or course credit in return for their participation.   

Child participants: 147 children took part in Study 2b (age range: from 9;0 to 12;0 years, mean age: 

10;1 years; 68 girls, 79 boys). Children's ages did not differ across conditions (F(3)=1.69, p>0.1). 

All children were visitors at the Bloomfield Science Museum in Jerusalem and were recruited for 

this study as part of their visit to the Living Lab. Parental consent was obtained for all children. All 

children were native Hebrew speakers without learning disabilities or attention deficits. Children 

received a small prize in return for their participation. 

Materials  

Auditory stimuli 

Participants were exposed to one of the familiarization streams according to the experimental 

condition they were assigned to. All streams consisted of the same four tri-syllabic words: 

"dukame", "nalubi", "kibeto", and "genodi". We used only four words because we wanted to 

compare child and adult performance on a language that will be learnable for both. The 12 unique 

syllables were taken from Glicksohn & Cohen (38). They were created using the PRAAT 

synthesizer (39) and were matched on pitch (~76 Hz), volume (~60 dB), and duration (250–350 

ms). The four words were created by concatenating the syllables using MATLAB to ensure that 

there were no co-articulation cues to word boundary. The words were matched for length (mean 
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word length=860ms, range=845-888ms). The words were then concatenated together using 

MATLAB in a semi-randomized order to create the auditory familiarization streams. Importantly, 

there were no breaks between words or syllables and no prosodic or co-articulation cues in the 

stream to indicate word boundaries.   

Experimental conditions 

We used the same four words to create all our experimental conditions described in Tables 2-4. All 

the skewed conditions had the same exposure length as each other, and as the uniform condition. 

For each of the skewed conditions, we created four different exposure streams: in each, the 

frequent word was different (to ensure the effect of efficiency is not driven by one particular word 

being easier to learn). Tables 2-4 and Table S3 show all the parameters of each condition.  

Procedure 

Children and adults wore noise-cancelling headphones while sitting in front of a computer. All 

participants were told they are going to listen to an alien language and that they need to pay 

attention and try to learn it as best as they can. The instructions were identical in all conditions. 

During exposure, a check-board image was displayed on the screen. After the familiarization 

phase, participants performed a segmentation test. On each trial, they heard two words and were 

asked to decide which belonged to the language they heard. They were told to guess if they were 

not sure. Each of the four words appeared once with each of the four foils to create 16 two-

alternative-forced-choice trials. The trials appeared in a semi-randomized order, with the constraint 

that the same word/foil did not appear in two consecutive trials. The order of words and foils was 

counter-balanced so that in half the trials, the real word appeared first and in the other half, the foil 

appeared first. Our foils were non-words created by combining three syllables from three different 

words while maintaining their position ("dunobi", "nabedi", "kilume", and "gekato", average length: 

860ms; range 854-868ms). Non-words, as opposed to part-words, never appeared together during 

exposure, making it easier to distinguish between them and real words. We used the "easier" non-

words (rather than part words) to ensure that children will be able to complete the task, and because 

we did not set out to show that learners can be discriminate words from part-words (a finding shown 

extensively), but to see how efficiency affects this ability.  

 

Data Availability 

All raw data for Study 2 and 3 is available at 

http://dx.doi.org/10.23668/psycharchives.3009  
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Figures and Tables 

A)  B)   

C)  

Figure 1. Adult segmentation scores from Study 2a. (A) Accuracy across conditions. (B) Accuracy 

only for the lower frequency words. (C) Comparing low frequency words (with brown borders) and 

high frequency words (with black borders) in the two skewed conditions. Dashed lines represent 

chance level. Error bars represents confidence intervals of 95%. Points represents individual 

scores with greater darkness for more individual participants. Numbers indicate frequency during 

exposure. 
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A)  B)  

C)  

Figure 2. Children's segmentation scores from Study 2b. (A) Accuracy across conditions. (B) 

Accuracy on the lower frequency words. (C) Comparing low frequency words (with brown borders) 

and high frequency words (with black borders) in the two skewed conditions. Dashed lines 

represent chance level. Error bars represents confidence intervals of 95%. Points represents 

individual scores with greater darkness for more individual participants. Numbers indicate 

frequency during exposure. 
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A)  

B)  

 
Figure 3. Comparing adult segmentation scores on low frequency words (with brown borders) and 

high frequency words (with black borders) across conditions: (A) Study 3a (note that the sample 

for the binary-reduced efficiency is the one from Study 2a); (B) Study 3b. Dashed lines represent 

chance level. Error bars represents confidence intervals of 95%. Points represents individual 

scores with greater darkness for more individual participants. Numbers indicate frequency during 

exposure (in the Zipfian conditions this is the average of the low frequency words). 
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Table 1. Summary of corpora measures across languages. 

 

  

Language 
No. 

Corpora 

No. 

Tokens 

No. 

Types 

Word Frequency 

(per million) 

Observed 

Entropy 

[bits] 

Maximal 

Entropy 

[bits] 

Efficiency 

British 

English 
12 7,066,980 30,470 

1 - 333,802  

(0.14 - 47,234) 
8.83 14.9 0.59 

North 

American 

English 

34 6,404,744 34,593 
1 - 294,493  

(0.16 - 45,980) 
8.99 15.08 0.6 

German 7 2,177,584 37,236 
1 - 71,561  

(0.46 - 32,862) 
9.16 15.18 0.60 

French 8 1,938,055 21,776 
1 - 75,134  

(0.52 - 38,767) 
8.86 14.41 0.61 

Japanese 6 1,503,673 36,031 
1 - 71,580  

(0.67 - 47,603) 
9.45 15.14 0.62 

Dutch 5 1,149,781 19,870 
1 - 45,815  

(0.87 - 39,846) 
8.67 14.28 0.61 

Polish 8 794,232 44,555 
1 - 32,172  

(1.26 - 40,509) 
10.35 15.44 0.67 

Spanish 12 608,277 15,485 
1 - 22,652  

(1.64 - 37,239) 
8.97 13.92 0.64 

Swedish 2 376,879 10,035 
1 - 19,259  

(2.65 - 51,101) 
8.4 13.29 0.63 

Portuguese 2 352,661 8,611 
1 - 23,828  

(2.84 - 67,566) 
8.23 13.07 0.63 

Hebrew 6 306,765 14,095 
1 - 16,372  

(3.26 - 53,369) 
9.37 13.78 0.68 

Mandarin 2 216,715 8,853 
1 - 9,217  

(4.61 - 42,530) 
8.66 13.11 0.66 

Estonian 5 216,504 12,072 
1 - 12,224  

(4.62 - 56,460) 
9.5 13.56 0.70 

Danish 1 194,765 4,924 
1 - 10,741  

(5.13 - 55,148) 
7.71 12.27 0.63 

Catalan 4 189,844 7,970 
1 - 12,318  

(5.27 - 64,884) 
8.71 12.96 0.67 

Norwegian 2 184,676 8,342 
1 - 9,196  

(5.41 - 49,795) 
8.75 13.03 0.67 

Summary 

Mean = 

8.91 

(SD=0.6) 

Mean = 

13.96 

(SD=0.98) 

Mean= 

0.64 

(SD=0.033) 
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Table 2. Study 2 experimental conditions. 

Condition 
Length 

[min] 

Total No. 

tokens 

No. 

repetitions 

per word 

Unigram 

entropy 

[bits] 

Efficiency 

Shorter-

uniform 
1:05 76 19 2 1 

Uniform 1:50 128 32 2 1 

Reduced 

efficiency 
1:50 128 

Frequent: 71 

Infrequent: 19 
1.7 0.85 

Language-like 

efficiency 
1:50 128 

Frequent: 101 

Infrequent: 9 
1.1 0.54 
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Table 3. Study 3a experimental conditions. 

 

  

Efficiency 
Distribution 

type 

Length 

[min] 

Total 

No. 

tokens 

No. 

repetitions 

per word 

Unigram 

entropy 

[bits] 

Efficiency 

Reduced  

efficiency 

Binary 1:50 128 

Frequent: 

71 

Infrequent: 

19 

1.7 0.85 

Zipfian 1:50 128 

Frequent: 

70 

Infrequent: 

30, 18, 10 

1.65 0.83 

Language-

like 

efficiency 

Binary 1:50 128 

Frequent: 

92 

Infrequent: 

12 

1.3 0.65 

Zipfian 1:50 128 

Frequent: 

93 

Infrequent: 

21, 9, 5 

1.21 0.61 
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Table 4. Study 3b experimental conditions. 

Condition 
Length 

[min] 

Total No. 

tokens 

No. 

repetitions 

per word 

Unigram 

entropy 

[bits] 

Efficiency 

Language-like 

efficiency* 
1:50 128 

Frequent: 

92 

Infrequent: 

12 

1.3 0.65 

Low efficiency 1:50 128 

Frequent: 

110 

Infrequent: 

6 

0.81 0.4 

* This is the same sample as in Study 3a. 

 

 

 

 

 

 

 

 

 

 

 

 


